Два фермера, работая вместе, могут вспахать поле за 25 часов. Производительность труда у первого и второго относятся как 2:5. Фермеры планируют работать поочередно. Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
х+у=125 2х=5у Последовательно: 2х+2у=2/25 2х-5у=0 7у=2/25 и у=2175 Тогда х=135 Итак, производительности мы нашли. Поочередно фермеры работали 45,5 часа = 91/2 часа. Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов. Уравнение: (91/2-Т)⋅(1/35)+Т⋅(2/175)=1 имеет корень Т=17,5 Проверка. 1. проверим , что х+у=125 1/35+2/175=(70+175)/(175⋅35)=7/175=1/25 2. проверим, что 2х=3у: 2/35=5⋅2/175 3. Проверим уравнение при поочередной работе: Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов 28⋅135+(352)⋅(2175)=28/35+1/5=1 ОТВЕТ: 17,5
Если в пространстве задана точка Мо(хо, уо, zо), то уравнение плоскости, проходящей через точку Мo перпендикулярно вектору нормали (A, B, C) имеет вид: A(x – xо) + B(y – yо) + C(z – zо) = 0.
Так как перпендикуляр, опущен из начала координат на эту плоскость, то нормальный вектор равен MО(−7; 1; 3).
Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
Если в пространстве задана точка Мо(хо, уо, zо), то уравнение плоскости, проходящей через точку Мo перпендикулярно вектору нормали (A, B, C) имеет вид: A(x – xо) + B(y – yо) + C(z – zо) = 0.
Так как перпендикуляр, опущен из начала координат на эту плоскость, то нормальный вектор равен MО(−7; 1; 3).
Получаем уравнение -7(x + 7) + (y - 1) + 3)z - 3) = 0.
Раскроем скобки: -7x - 49 + y - 1 + 3z - 9 = 0
-7x + y + 3z = 59 и разделим об части на 59.
(x/(-59/7)) + (y/59) + (z/(59/3)) = 1. Это уравнение в "отрезках".
ответ: длина отрезка, отсекаемого найденной плоскостью от оси OY, равна 59.