Левая круглая скобка дробь, числитель — 9 в степени дробь, числитель — 1, знаменатель — 3 , знаменатель — умножить на {9 в степени дробь, числитель — 1, знаменатель — 4 } корень из [ 12]9 правая круглая скобка в степени 3 =9 в степени 3 умножить на левая круглая скобка дробь, числитель — 1, знаменатель — 3 плюс дробь, числитель — 1, знаменатель — 4 минус дробь, числитель — 1, знаменатель — 12 правая круглая скобка =9 в степени дробь, числитель — 3, знаменатель — 2 =3 в степени 2 умножить на дробь, числитель — 3, знаменатель — 2 =3 в степени , ответьте подробно.
1)2cosx+1=0, cosx=-1/2, x=+-2π/3+2πk, k∈z
2sinx-√3=0, sinx=√3/2, x=(-1)^k*π/3+kπ,k∈z
2) cosx(2-3sinx)=0,sinx=0,x=πk,k∈z
2-3sinx=0, sinx=2/3, x=(-1)^k arcsin2/3+πk,
3)sinx(4sinx-3)=0, sinx=0, x=πk,k∈z
4sinx-3=0 sinx=3/4, x=(-1)^karcsin3/4+πk,k∈z
4)(sin^2(x)=1/2,x=+-π/4+πk,k∈z.
5)6sin^2(x)+sinx-2=0,Sinx=t, 6t^2+t-2=0 , его корни t1=-2/3,t2=1/2,
sinx=-2/3,x=(-1)^(k+1)arcsin2/3+πk,k∈z, sinx=1/2,x=(-1)^kπ/6+πk,k∈z.
6) 3cos^2(x)-7sinx-7=0,Заменим косинус на синус получим
3sin^2(x)+7sinx+4=0, его корни sinx=-8/6- корней нет, sinx=-1, x= -π/2+2πk,k∈z
Объяснение:
Пусть х - любое натуральное число, тогда следующее натуральное число будет на 1 больше и так далее. Запишем пять последовательных натуральных чисел, первое из которых х: х, х + 1, х + 2, х + 3, х + 4.
Найдем сумму этих пяти чисел:
х + (х + 1) + (х + 2) + (х + 3) + (х + 4) = 5 * х + 10 = 5 * (х + 2).
Как известно произведение делятся на число 5, если хотябы один из множителей делится на число 5. Так как 5 : 5 = 1, значит последовательность пяти натуральных чисел делится нацело на 5, что и требовалось доказать.
Объяснение:)