sin^2t+cos^2t=1\\cos^2t=1-sin^2t\\cost=\pm\sqrt{1-sin^2t}
Т.к. t∈(π/2;π) - 2 четверть, в ней косинус отрицательный. значит перед корнем будет минус.
cost=-\sqrt{1-(\frac{5}{13})^2}=-\sqrt{\frac{169}{169}-\frac{25}{169}}=-\sqrt{\frac{144}{169}}=-\frac{12}{13}
sin2t=2sint*cost=2*\frac{5}{13}*(-\frac{12}{13})=-\frac{120}{169}cos2t=cos^2t-sin^2t=(-\frac{12}{13})^2-(\frac{5}{13})^2=\frac{144}{169}-\frac{25}{169}=\frac{119}{169}tg2t=\frac{sin2t}{cos2t}=\frac{-\frac{120}{169}}{\frac{119}{169}}=-\frac{120}{169}*\frac{169}{119}=-\frac{120}{119}ctg2t=\frac{1}{tg2t}=\frac{1}{-\frac{120}{119}}=-\frac{119}{120}
20 (км/час) - собственная скорость катера
Объяснение:
х - собственная скорость катера
х+2 - скорость катера по течению
х-2 - скорость катера против течения
88/х+2 - время по течению
72/х-2 - время против течения
По условию задачи на весь путь ушло 8 часов, уравнение:
88/х+2+72/х-2=8
Избавляемся от дробного выражения, общий знаменатель (х-2)(х+2) или х²-4, надписываем над числителями дополнительные множители:
88(х-2)+72(х+2)=8(х²-4)
88х-176+72х+144=8х²-32
160х-32=8х²-32
-8х²+32+160х-32=0
8х²-160х=0/8 разделим на 8 для удобства вычислений:
х²-20х=0
х(х-20)=0
х₁=0, отбрасываем, как не отвечающий условию задачи
х-20=0
х=20
х₂=20 (км/час) - собственная скорость катера
Проверка:
88 : (20+2)=4 (часа) по течению
72 : (20-2)=4 (часа) против течения
Всего 8 часов, всё верно.
sin^2t+cos^2t=1\\cos^2t=1-sin^2t\\cost=\pm\sqrt{1-sin^2t}
Т.к. t∈(π/2;π) - 2 четверть, в ней косинус отрицательный. значит перед корнем будет минус.
cost=-\sqrt{1-(\frac{5}{13})^2}=-\sqrt{\frac{169}{169}-\frac{25}{169}}=-\sqrt{\frac{144}{169}}=-\frac{12}{13}
sin2t=2sint*cost=2*\frac{5}{13}*(-\frac{12}{13})=-\frac{120}{169}cos2t=cos^2t-sin^2t=(-\frac{12}{13})^2-(\frac{5}{13})^2=\frac{144}{169}-\frac{25}{169}=\frac{119}{169}tg2t=\frac{sin2t}{cos2t}=\frac{-\frac{120}{169}}{\frac{119}{169}}=-\frac{120}{169}*\frac{169}{119}=-\frac{120}{119}ctg2t=\frac{1}{tg2t}=\frac{1}{-\frac{120}{119}}=-\frac{119}{120}
20 (км/час) - собственная скорость катера
Объяснение:
х - собственная скорость катера
х+2 - скорость катера по течению
х-2 - скорость катера против течения
88/х+2 - время по течению
72/х-2 - время против течения
По условию задачи на весь путь ушло 8 часов, уравнение:
88/х+2+72/х-2=8
Избавляемся от дробного выражения, общий знаменатель (х-2)(х+2) или х²-4, надписываем над числителями дополнительные множители:
88(х-2)+72(х+2)=8(х²-4)
88х-176+72х+144=8х²-32
160х-32=8х²-32
-8х²+32+160х-32=0
8х²-160х=0/8 разделим на 8 для удобства вычислений:
х²-20х=0
х(х-20)=0
х₁=0, отбрасываем, как не отвечающий условию задачи
х-20=0
х=20
х₂=20 (км/час) - собственная скорость катера
Проверка:
88 : (20+2)=4 (часа) по течению
72 : (20-2)=4 (часа) против течения
Всего 8 часов, всё верно.