1) Приводим левую часть к общему знаменателю:
(3х-5)(х-2)-(2х-5)(х-1)/(х-1)(х-2)=1
2) Если уравнение равное единицы, то знаменатель дроби и числитель равны между собой, следовательно, получаем следующее:
(3х-5)(х-2)-(2х-5)(х-1)=(х-1)(х-2)
3) Раскрываем скобки по всем правилам:
3х^2-6х-5х+10-2х^2+2х+5х-5=х^2-2х-х+2
4) Все с х и х^2 в одну сторону с противоположным знаком , приводим подобные и производим необходимы действия:
3х^2-2х^2-х^2-6х-5х+2х+5х+2х+х=-10+5+2
-х=-3/:(-1)
х=3
5) Проверяем, подставив ответ в исходное уравнение
В решении.
Объяснение:
1. (0,4m + n⁴)(0,16m² - 0,4mn⁴ + n⁸) =
= 0,064m³ - 0,16m²n⁴ + 0,4mn⁸ + 0,16m²n⁴ - 0,4mn⁸ + n¹² =
= 0,064m³ + n¹².
2. 68,4² − 68,3² = разность квадратов, разложить по формуле:
= (68,4 - 68,3)*(68,4 + 68,3) =
= 0,1 * 136,7 = 13,67.
3. Разложи на множители:
36t² + 84t + 49 = (6t + 7)² = (6t + 7)*(6t + 7).
Выбери все возможные варианты:
(6t+7)⋅(6t+7)
(6t−7)⋅(6t−7)
(6t−7)2
(6t+7)⋅(6t−7)
4. Представь квадрат двучлена в виде многочлена:
(18x⁴ − 34)² = квадрат разности, разложить по формуле:
= 324х⁸ - 1224х⁴ + 1156.
1) Приводим левую часть к общему знаменателю:
(3х-5)(х-2)-(2х-5)(х-1)/(х-1)(х-2)=1
2) Если уравнение равное единицы, то знаменатель дроби и числитель равны между собой, следовательно, получаем следующее:
(3х-5)(х-2)-(2х-5)(х-1)=(х-1)(х-2)
3) Раскрываем скобки по всем правилам:
3х^2-6х-5х+10-2х^2+2х+5х-5=х^2-2х-х+2
4) Все с х и х^2 в одну сторону с противоположным знаком , приводим подобные и производим необходимы действия:
3х^2-2х^2-х^2-6х-5х+2х+5х+2х+х=-10+5+2
-х=-3/:(-1)
х=3
5) Проверяем, подставив ответ в исходное уравнение
В решении.
Объяснение:
1. (0,4m + n⁴)(0,16m² - 0,4mn⁴ + n⁸) =
= 0,064m³ - 0,16m²n⁴ + 0,4mn⁸ + 0,16m²n⁴ - 0,4mn⁸ + n¹² =
= 0,064m³ + n¹².
2. 68,4² − 68,3² = разность квадратов, разложить по формуле:
= (68,4 - 68,3)*(68,4 + 68,3) =
= 0,1 * 136,7 = 13,67.
3. Разложи на множители:
36t² + 84t + 49 = (6t + 7)² = (6t + 7)*(6t + 7).
Выбери все возможные варианты:
(6t+7)⋅(6t+7)
(6t−7)⋅(6t−7)
(6t−7)2
(6t+7)⋅(6t−7)
4. Представь квадрат двучлена в виде многочлена:
(18x⁴ − 34)² = квадрат разности, разложить по формуле:
= 324х⁸ - 1224х⁴ + 1156.