В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С 4 4 4 5 5 5 4 4 5 4 5 5 5 5 4 5 4 4 4 5 4 5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б 3 3 4 4 5 5 3 4 4 3 4 5 5 4 3 5 5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу: - где a-число оценок, b-число учеников.
В итоге и получаем: 1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5). Отсюда:
Второй
Для первого ученика существует 4 варианта: 2,3,4,5 Для второго ученика существует 4 варианта на каждый вариант первого ученика. То есть: - варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика. То есть: - варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
1) 2x - 3y = 6
Точки пересечения с осью Ох: принимаем у=0
2x - 3*0 = 6
2x = 6
x = 3
(3;0) - точка пересечения с осью Ох
Точки пересечения с осью Оу: принимаем х=0
2*0 - 3у = 6
-3у = 6
у = -2
(0;-2) - точка пересечения с осью Оу.
2) x² + y = 4
Точки пересечения с осью Ох: принимаем у=0
x² + 0 = 4
x² = 4
x = ± 2
(-2;0), (2;0) - точки пересечения с осью абсцисс.
Точки пересечения с осью Оу: принимаем х=0
0² + у = 4
у = 4
(0;4) - точка пересечения с осью ординат.
3) |x| + |y| = 7
Точки пересечения с осью Ох: принимаем у = 0.
|x| + |0| = 7
|x| = 7
x = ± 7
(-7;0), (7;0) - точки пересечения с осью абсцисс.
Точки пересечения с осью Оу: принимаем х = 0.
|0| + |y| = 7
|y| = 7
y = ± 7
(0;-7), (0;7) - точки пересечения с осью ординат.
Объяснение:
1 ученик - А
2 ученик - Б
Получаем:
А Б
4 5
5 4
5 5
4 4
В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С
4 4 4
5 5 5
4 4 5
4 5 5
5 5 4
5 4 4
4 5 4
5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б
3 3
4 4
5 5
3 4
4 3
4 5
5 4
3 5
5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу:
- где a-число оценок, b-число учеников.
В итоге и получаем:
1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
Второй
Для первого ученика существует 4 варианта:
2,3,4,5
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
- варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
- варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
- вариантов событий.