Контрольная работа № 4 по теме «Системы уравнений»
Вариант № 1
1. Найти два решения уравнения 5х + 2y = –10.
2. Найти координаты точек пересечения прямой x+2y = 6с осями
координат.
3. Построить прямую, заданную уравнением у=-x+5.
4. Вычислить координаты точки пересечения прямых 3х + 2y = 6
x - 2y = 2.
И
(2; - 1)
решением
системы
5. Является ЛИ
пара Чисел
(3x+2y = 4
уравнений
x – Зу = 5
Объяснение:
Сөйлем мүшелері – сөздердің мағыналық тұрғыдан өзара тіркесуі нәтижесінде синтаксистік қызметте жұмсалатын сөйлемнің дербес бөлшектері. Сөйлемдегі сөздер бір-бірімен мағыналық байланыста болады, сол байланыс негізінде грамматикалық мағынаға ие болған сөздер, сөз тіркестері сөйлем мүшелері қызметін атқарады. Сөйлем мүшелері қызметінде сөйлемнің дұрыс құрылуының, әр сөздің өз орнында жұмсалуы мен ой желісі, стильдік жағынан нақты болуының орны ерекше. Сөйлем мүшелері үлкен екі топқа бөлінеді:
тұрлаулы мүшелер (бастауыш, баяндауыш);
тұрлаусыз мүшелер (анықтауыш, толықтауыш, пысықтауыш).
Тұрлаулы мүшелер сөйлемнің негізгі арқауы саналады, предикативтік қатынас негізінде ең кіші сөйлем ретінде жұмсалып, олардың негізінде тақырып, рема, тіпті есімді, етістікті сөз тіркестері айқындалады.[1]
Высоты треугольника пересекаются в одной точке.
Следовательно, достаточно найти уравнения двух любых высот треугольника и точку их пересечения, решив систему двух уравнений.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Значит надо найти уравнение стороны треугольника и уравнение прямой, проходящей через противоположную вершину, перпендикулярно этой стороне.
Уравнение прямой АВ найдем по формуле:
(X-Xa)/(Xb-Xa)=(Y-Ya)/(Yb-Ya). Или
(X+4)/2=(Y-0)/-2 - каноническое уравнение =>
y=-x-2 - уравнение прямой с угловым коэффициентом k=-1.
Условие перпендикулярности прямых: k1=-1/k => k1=1.
Тогда уравнение перпендикуляра к стороне АВ из вершины С
найдем по формуле:
Y-Yс=k1(X-Xс) или Y-2=X-2 =>
y=х (1) - это уравнение перпендикуляра СС1.
Уравнение прямой АС:
(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Yа). Или
(X+4)/6=(Y-0)/2 - каноническое уравнение =>
y=(1/3)x+4/3 - уравнение прямой с угловым коэффициентом k=1/3.
Условие перпендикулярности прямых: k1=-1/k => k1 = -3.
Тогда уравнение перпендикуляра к стороне АС из вершины В
найдем по формуле:
Y-Yb=k1(X-Xb) или Y+2=-3(X+2) =>
y=-3х-8 (2)- это уравнение перпендикуляра BB1.
Точка пересечения перпендикуляров имеет координаты:
х=-3х - 8 (подставили (1) в (2)) => х = -2.
Тогда y = -2.
ответ: точка пересечения высот совпадает с вершиной В(-2;-2)
треугольника, то есть треугольник прямоугольный с <B=90°.
Для проверки найдем длины сторон треугольника:
АВ=√(((-2-(-4))²+(-2)²) = 2√2.
ВС=√(((2-(-2))²+(2-(-2))²) = 4√2.
АС=√(((2-(-4))²+2²) = 2√10.
АВ²+ВС² = 40; АС² = 40.
По Пифагору АВ²+ВС² = АС² - треугольник прямоугольный.
Объяснение: