Заметим, что 94 = 95 - 1 ⇒ xy + z = x + yz - 1 ⇔ xy - x + z - yz = -1 ⇔ x(y - 1) - z( y - 1) = -1 ⇔ (y - 1)(x - z) = 1 ⇔ (y - 1)(z - x) = 1. Значит, либо оба множителя равны 1, либо -1, либо один из них целый, а второй - обратный первому. В последнем случае получается, что какое-то из чисел обязательно будет дробным, а это не удовлетворяет условию задачи.
1) y - 1 = -1, z - x = -1 ⇒ y = 0, z = 94, x = 95. z - x = 94 - 95 = -1 - верно, решение (95; 0; 94) подходит.
2) y - 1 = 1, z - x = 1 ⇒ y = 2.
z - x = 32 - 31 = 1 - верно, решение (31; 2; 32) подходит.
1) 3x^2-12=0
3x^2=12
x^2=4
x=+-2
2) 2x^2+6x=0
2x(x+3)=0
x=0 x=-3
3) 1,8x^2=0
x=0
4) x^2+9=0
x^2=-9
net resheniy
5) 7x^2-14=0
x^2-2=0
x^2=2
x=+- √2
6) x^2-3x=0
x(x-3)=0
x=0 x=3
7) (x-2)^2=3x-8
x^2-4x+4-3x+8=0
x^2-7x+12=0
(x-4)(x-3)=0
x=4 x=3
8) (x-1)^2=29-5x
x^2-2x+1-29+5x=0
x^2+3x-28=0
(x+7)(x-4)=0
x=-7 x=4
9) (x+3)^2=-(x-1)^2
x^2+6x+9=x^2-2x+1
8x=-8
x=-1
10) 5(x-2)^2=-6x-44
5(x^2-4x+4)+6x+44=0
5x^2-14x+64=0
D=14^2-64*4*5<0
net resheniy
11) (-x-1)(x-4)=x(4x-11)
-x^2+4x-x+4=4x^2-11x
5x^2-14x-4=0
D=14^2+4*5*4=276
√D=√276
x1=(14-√276)/10
x2=(14+√276)/10
12) 5(x-2)=(3x+2)(x-2)
5=3x+2
3x=3
x=1
Заметим, что 94 = 95 - 1 ⇒ xy + z = x + yz - 1 ⇔ xy - x + z - yz = -1 ⇔ x(y - 1) - z( y - 1) = -1 ⇔ (y - 1)(x - z) = 1 ⇔ (y - 1)(z - x) = 1. Значит, либо оба множителя равны 1, либо -1, либо один из них целый, а второй - обратный первому. В последнем случае получается, что какое-то из чисел обязательно будет дробным, а это не удовлетворяет условию задачи.
1) y - 1 = -1, z - x = -1 ⇒ y = 0, z = 94, x = 95. z - x = 94 - 95 = -1 - верно, решение (95; 0; 94) подходит.
2) y - 1 = 1, z - x = 1 ⇒ y = 2.
z - x = 32 - 31 = 1 - верно, решение (31; 2; 32) подходит.
ответ: (95; 0; 94), (31; 2; 32)