Кинофестиваль проводится в 3 дня. Всего планируется показать 40 фильмов: в первый день— 12 фильмов, остальные распределены поровну между вторым и третьим днями. Один из фильмов, которые будут показывать на фестивале, снял режиссёр К. Порядок фильмов определяется случайным образом. Какова вероятность, что фильм режиссёра К. окажется запланированным на третий день фестиваля?
Объяснение:
1) 2,7/(2,9-1,1)=2,7/(1,8)=27/18=3/2=1,5
2) Найдите корни уравнения 2x в степени 2 плюс 14x=0. Ты (подсказка: выносим что-то общее за скобку, далее произведение двух выражений равно нулю, значит кто-то из них ноль...)
2x²+14x=0
2x(x+7)=0
x₁=0 ; x₂=-7
3) Решите уравнение: (дробь, числитель — 3x минус 2, знаменатель — 4) минус (дробь, числитель — x, знаменатель — 3 )= 2. (подсказка: не забудьте, сначала приводим к общему знаменателю, затем отбрасываем знаменатель.)
(3x-2)/4 - x/3=2
((3x-2)*3-4x)/12=2
9x-6-4x=24
5x-6=24
5x=24+6
5x=30
x=30/5
x=6
ответ: Воспользуемся формулой n-го члена геометрической прогрессии bn = b1 * qn - 1, где b1 - первый член геометрической прогрессии, q - знаменатель геометрической прогрессии.
Согласно условию задачи, в данной геометрической прогрессии b5 = -14 и b8 = 112.
Используя формулу n-го члена геометрической прогрессии при n = 5 и n = 8, получаем:
-14 = b1 * q5 - 1;
112 = b1 * q8 - 1.
Разделив второе соотношение на первое, получаем:
b1 * q8 - 1 / (b1 * q5 - 1) = 112 / (-14);
q7 / q4 = -8;
q³ = (-2)³;
q = -2.
ответ: знаменатель данной геометрической прогрессии равен -2