Каждому из двух студентов на зачете задано по два вопроса
события ai = {первый студент правильно ответил на i-то вопросы, i = 1; 2},
b j = {второй студент правильно ответил на j-й вопрос, j = 1; 2},
c = {каждый студент дал только один правильный ответ}.
выразите событие c через ai, bj.
=> a³+b³+c³=-(3a²b+3ab²) => a³+b³+c³=-3ab(a+b) => a³+b³+c³=-3ab(-c) =>
=> a³+b³+c³=3abc
2) Обратное утверждение:
Если a³+b³+c³=3abc, то a+b+c=0 (думаю, имеется в виду, что a+b+c обязательно будет равно 0, и не существует других вариантов).
Из утверждения следует, что c³-3abc+a³+b³=0. Допустим, известны числа a и b. Тогда c³-3abc+a³+b³=0 является кубическим уравнением относительно c. Как известно, любое кубическое уравнение с рациональными коэффициентами имеет ровно три корня (необязательно действительных). Отсюда следует, что при фиксированных a и b и при 3-х вариантах c получится три варианта для суммы a+b+c, одним из которых является a+b+c=0.
Таким образом, пункт 1 является верным. Пункт 2 не является верным.
Найдем другие два варианта для c.
Известно, что в уравнении c³-3abc+a³+b³=0 одним из решений является c=-(a+b), так как при подстановке в уравнение получится тождество. Разложим левую часть уравнения на скобки:
c³-3abc+a³+b³=(a+b+c)(c²-c(a+b)+a²-ab+b²).
Решим уравнение c²-c(a+b)+a²-ab+b²=0 относительно c:
D=(-(a+b))²-4(a²-ab+b²)=a²+2ab+b²-4a²+4ab-4b²=-3(a²-2ab+b²)=-3(a-b)²≤0
c1,2=((a+b)+-√3(a-b)*i)/2, где i²=-1, i - мнимая единица.
Если D=0, то a=b, а выражение для c примет такой вид: c=(a+b)/2=(a+a)/2=a. Получим, что в этом случае a=b=c, а сумма a+b+c=3a для любого a.
Если D<0, то c1=(a+b)/2+i√3(a-b)/2,
c2=(a+b)/2-i√3(a-b)/2.
А возможные варианты для суммы станут такими:
a+b+c=a+b+(a+b)/2+i√3(a-b)/2=3(a+b)/2+i√3(a-b)/2,
или
a+b+c=a+b+(a+b)/2-i√3(a-b)/2=3(a+b)/2-i√3(a-b)/2
5-9 Геометрия
1.Стороны параллелограмма равны 15 см и 25 см, а высота, проведённая к большей стороне, равна 12 см. Найти диагонали параллелограмма.2
Попроси больше объяснений Следить Отметить нарушениеот nEtUtUt 08.02.2015
ответы и объяснения
svetova светило науки2015-02-08T19:49:27+00:00
Так как к стороне проведена высота, то получится прямоугольный треугольник в котором известен катет=высоте=12 и гипотенуза=малой стороне параллел=15 найдем угол
sin(угла)=катет\гипот=12\15=3\5
cos (угла)=√(1-sin²(угла))=√(1-16\25)=√9\25=3\5
по формуле найдем диагональ
a=√(b²+c²-2bc*cos(угла))=√(15²+25²-2*15*25*3\5)=√400=20
по свойсчтву диагоналей параллелограмма (сумма квадратов диагоналей равна сумме квадратов сторон) найдем вторую диагональ
400+диаг²=25²+15²
диаг²=625+225-400=450
диаг=√450=15√2
ответ 20 и 15√2