Какова вероятность того, что четырёхзначный номер случайно взятого автомобиля в большом городе: а) Имеет все цифры разные б) Имеет только 2 одинаковые цифры в) Имеет 2 пары одинаковых цифр г) Имеет только 3 одинаковые цифры д) Все цифры одинаковые
Достроим треугольник DAM до параллелограмма AMED. ME || AD || BC Поэтому точка E лежит в плоскости ADM и лежит в плоскости BCM. Следовательно ME и есть прямая пересечения ADM и BCM ME=BC и ME || BC, следовательно BMEC параллелограмм угол MBC прямой, BMEC -- прямоугольник, следовательно ME перпендикулярно BM. угол BAD прямой, следовательно, MAD -- тоже прямой (теорема о 3 перпендикулярах) , следовательно AMED -- прямоугольник, следовательно, ME перпендикулярно AM. ME перпендикулярно AM и BM, следовательно, ME перпендикулярно плоскости ABM.
Проведем радиусы окружности к точкам касания со сторонами квадрата, как показано на рисунке. Обозначим ключевые точки A, B, C и D. ABCD образует четырехугольник. В этом четырехугольнике: ∠A=90° (по определению квадрата). ∠B=∠D=90° (по свойству касательной). Тогда и ∠С=90° (так как сумма углов четырехугольника равна 360°). Т.е. ABCD - прямоугольник (по определению). По свойству прямоугольника: AB=CD=R AD=BD=R Т.е. ABCD - квадрат. Из рисунка очевидно, что радиус равен половине стороны квадрата: R=56/2=28
ME || AD || BC
Поэтому точка E лежит в плоскости ADM и лежит в плоскости BCM.
Следовательно ME и есть прямая пересечения ADM и BCM
ME=BC и ME || BC, следовательно BMEC параллелограмм
угол MBC прямой, BMEC -- прямоугольник, следовательно ME перпендикулярно BM.
угол BAD прямой, следовательно, MAD -- тоже прямой (теорема о 3 перпендикулярах) , следовательно AMED -- прямоугольник, следовательно, ME перпендикулярно AM.
ME перпендикулярно AM и BM, следовательно, ME перпендикулярно плоскости ABM.
ответ: радиус равен 28
Объяснение:
Проведем радиусы окружности к точкам касания со сторонами квадрата, как показано на рисунке. Обозначим ключевые точки A, B, C и D. ABCD образует четырехугольник. В этом четырехугольнике: ∠A=90° (по определению квадрата). ∠B=∠D=90° (по свойству касательной). Тогда и ∠С=90° (так как сумма углов четырехугольника равна 360°). Т.е. ABCD - прямоугольник (по определению). По свойству прямоугольника: AB=CD=R AD=BD=R Т.е. ABCD - квадрат. Из рисунка очевидно, что радиус равен половине стороны квадрата: R=56/2=28