Функция - есть отношение или зависимость одной величины от другой по определённому закону, который и прописан в самой формуле функции.
Выражение y=f(x) расшифровывается как "Переменная у зависит от переменной х по формуле (закону) f.
Для того, чтобы правильно построить график какой-либо функции, вам необходимо понимать (видеть) общие для множества функций признаки.
К примеру, видеть, линейная это функция или квадратичная, экспоненциальная; периодическая, непрерывная и т.д. Все эти слова не должны быть для вас пустым звуком.
Если вы хотите правильно построить график, нужно начинать с области определения функции, т.е. определить, какие значения может принимать х, чтобы выражение имело решение. К примеру у=(1/х) - в таком выражении х не может быть равным 0, соответственно в точке х=0 - будет разрыв графика функции.
Я не могу здесь описывать весь раздел математики по всем видам функций, но вы должны следовать такому алгоритму при построении:
1) упростить выражение, если это возможно;
2) определить тип функции;
3) найти область определения функции;
4) в зависимости пунктов 2) и 3) найти координаты от 2 (для линейной функции) до 10 (для всех других) точек функции методом поочередного вычисления значения у для конкретного значения х, взятых с определенным вами же промежутком приращения;
5) построить и соединить полученные точки линиями (отрезками или кривыми) в зависимости от пунктов 2) и 3).
Если вы ничего не поняли из вышеописанного, а график строить надо, просто вычислите 10 координат точек графика функции, начиная с
х = -5 и заканчивая
х = 5 с приращением 0,5 каждую новую точку.
пример: функция у=х²-1
подставляем
х = -5, получаем у = 24
х= -4,5 получаем у= 19,25
х= -4 получаем у= 15 ...
.. и так далее до х=5.
В результате получим классическую параболу, сдвинутую вдоль оси ординат (у) вниз на 1 единицу.
Нужно просто запомнить эти формулы. Например, нам дан многочлен x^2+8x+16 . Можно заметить, что это формула квадрата суммы: (a+b)^2=(a^2+2ab+b^2)
Там дана правая часть этой формулы, значит мы можем ее «закрыть» (разложить на множители).
Сначала нам нужно определить первое слагаемое. Какое число в квадрате дает x^2? Просто х. Теперь определяем второе слагаемое какое число в квадрате даёт 16? Это 4. Теперь подставляем х и 4 в формулу. Получаем (х+4)^2. И подобным образом используются все формулы сокращённого умножения.
Чтобы научиться видеть среди записанных многочленов формулы нужно просто много тренироваться и учиться анализировать выражения.
Объяснение:
Функция - есть отношение или зависимость одной величины от другой по определённому закону, который и прописан в самой формуле функции.
Выражение y=f(x) расшифровывается как "Переменная у зависит от переменной х по формуле (закону) f.
Для того, чтобы правильно построить график какой-либо функции, вам необходимо понимать (видеть) общие для множества функций признаки.
К примеру, видеть, линейная это функция или квадратичная, экспоненциальная; периодическая, непрерывная и т.д. Все эти слова не должны быть для вас пустым звуком.
Если вы хотите правильно построить график, нужно начинать с области определения функции, т.е. определить, какие значения может принимать х, чтобы выражение имело решение. К примеру у=(1/х) - в таком выражении х не может быть равным 0, соответственно в точке х=0 - будет разрыв графика функции.
Я не могу здесь описывать весь раздел математики по всем видам функций, но вы должны следовать такому алгоритму при построении:
1) упростить выражение, если это возможно;
2) определить тип функции;
3) найти область определения функции;
4) в зависимости пунктов 2) и 3) найти координаты от 2 (для линейной функции) до 10 (для всех других) точек функции методом поочередного вычисления значения у для конкретного значения х, взятых с определенным вами же промежутком приращения;
5) построить и соединить полученные точки линиями (отрезками или кривыми) в зависимости от пунктов 2) и 3).
Если вы ничего не поняли из вышеописанного, а график строить надо, просто вычислите 10 координат точек графика функции, начиная с
х = -5 и заканчивая
х = 5 с приращением 0,5 каждую новую точку.
пример: функция у=х²-1
подставляем
х = -5, получаем у = 24
х= -4,5 получаем у= 19,25
х= -4 получаем у= 15 ...
.. и так далее до х=5.
В результате получим классическую параболу, сдвинутую вдоль оси ординат (у) вниз на 1 единицу.
Надеюсь, мой труд не пропал зря.
Нужно просто запомнить эти формулы. Например, нам дан многочлен x^2+8x+16 . Можно заметить, что это формула квадрата суммы: (a+b)^2=(a^2+2ab+b^2)
Там дана правая часть этой формулы, значит мы можем ее «закрыть» (разложить на множители).
Сначала нам нужно определить первое слагаемое. Какое число в квадрате дает x^2? Просто х. Теперь определяем второе слагаемое какое число в квадрате даёт 16? Это 4. Теперь подставляем х и 4 в формулу. Получаем (х+4)^2. И подобным образом используются все формулы сокращённого умножения.
Чтобы научиться видеть среди записанных многочленов формулы нужно просто много тренироваться и учиться анализировать выражения.
Удачи в изучении!
P.S. ^ - знак возведения в степень.