1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
(x - 1)^2*(x + 2) = 0
(x - 1)^2 = 0
x - 1 = 0
x = 1
x + 2 = 0
x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1
x₁ = 1
x₂= - 1;
x - 3 = 0
x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0
x = 4
x - 3 = 0
x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0
x^2 = 4
x₁ = 2;
x₂ = - 2
x + 1 = 0
x₃ = - 1
1) Неправильная дробь. Выделяем целую часть.
Делим "углом"
x³ на х²-2х-3
получим
х+2+(7х+6)/(x²-2x-3)
Применяем свойство интегрирования: интеграл от суммы равен сумме интегралов.
=∫(х+2)dx+∫(7x+6)dx/(x²-2x-3)
Во втором интеграле выделяем полный квадрат
x²-2x-3=(х-1)²-4
и замену переменной
х-1=t
x=t+1
dx=dt
=∫(x+2)dx+∫(7t+3)dt/(t²-4)=(x²/2)+2x+(7/2)∫d(t²-4)/(t²-4)+3∫dt/(t²-4)=
=(x²/2)+2x+(7/2)ln|t²-4|+3/4ln|(t-2)/(t+2)+C=
=(x²/2)+2x+(7/2)ln|x²-2x-3|+3/4ln|(x-3)/(x+1)+C - о т в е т.
2
=(1/4)∫√(4х-1)d(4x-1)=(1/4)∫(4х-1)¹/²d(4x-1)=
(1/4)·(4х-1)³/²/(3/2) + С=(1/6)√(4х-1)³+С=(1/6)(4x-1)·√(4x-1)+C
3.
=(1/9)∫∛(9x-1)d(9x-1)=(1/9)∫(9x-1)¹/³d(4x-1)=(1/9)(9x-1)⁴/³/(4/3) + C=
=(1/12)(9x-1)·∛(9x-1) + C