Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:
,
где , a
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
целая часть. У нас она равна 2
- количество цифр в периоде. У нас их 2
количество цифр до периода. У нас их 0
все цифры, включая период, в виде натурального числа. У нас это 25
все цифры без периода в виде натурального числа. Их нет.
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под подставляется количество 9, а под -количество нулей. У нас , значит пишем две цифры 9, а , значит, нулей не пишем вообще. Между не стоит знак умножения
√675=15√3 15√3=√225*3 Мы просто раскладываем число 675 на два множителя. Из одного из них должен изыматься корень, из другого нет. Получаем √225*3. Изымаем корень из 225 и получаем 15. Поэтому √675=15√3 Тоже самое с √108. Раскладываем на √36*3. Изымаем корень из 36, получаем 6. 6√3. По сути, вы можете брать любые другие числа (не именно 225 и 36). Если трудно разложить, можно брать любые другие числа (4, 9), из которых изымается корень, и на них делить исходное число. Например: √108=√4*27=2√27=2√3*9=2*3√3=6√3
,
где , a
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
целая часть. У нас она равна 2
- количество цифр в периоде. У нас их 2
количество цифр до периода. У нас их 0
все цифры, включая период, в виде натурального числа. У нас это 25
все цифры без периода в виде натурального числа. Их нет.
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под подставляется количество 9, а под -количество нулей. У нас , значит пишем две цифры 9, а , значит, нулей не пишем вообще. Между не стоит знак умножения
Подставляем:
Подставляем в формулу:
15√3=√225*3
Мы просто раскладываем число 675 на два множителя. Из одного из них должен изыматься корень, из другого нет. Получаем √225*3. Изымаем корень из 225 и получаем 15.
Поэтому √675=15√3
Тоже самое с √108. Раскладываем на √36*3. Изымаем корень из 36, получаем 6. 6√3.
По сути, вы можете брать любые другие числа (не именно 225 и 36). Если трудно разложить, можно брать любые другие числа (4, 9), из которых изымается корень, и на них делить исходное число.
Например: √108=√4*27=2√27=2√3*9=2*3√3=6√3