- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
60/х -время,потраченное на путь из А в В
обратный путь
1 ч ехал со скоростью х км/ч,значит
х(км)-путь,которые проехал за 1 час
60-х -осталось проехать
х+4 км/ч - скорость
(60-х)/(х+4) -время движения со скоростью х+4 км/ч
20 мин=1/3 ч-остановка
всего на обратный путь он потратил
1 + 1/3 +(60-х)/(х+4)
составим уравнение
1 1/3+(60-х)/(х+4)=60/х умножим на 3х(х+4)
4х(х+4)+3х(60-х)=180(х+4)
4х²+16х+180х-3х²-180х-720=0
х²+16х-720=0
D=16²+4*720=3 136
√D=56
x1=(-16-56)/2=-36 км/ч не подходит
x2=(-16+56)/2=20 (км/ч) -искомая скорость
ответ:20 км/ч.
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)