1. log_2(4x+5)=log_2(9-2x) ОДЗ: 4х+5>0 => 4x>-5 => x>=-1.25
4x+5=9-2x 9-2x>0 => -2x>-9 => x<4.5
6x=4
x=2/3
2. log3(x^2-5x-23)=0 ОДЗ: x^2-5x-23>0
x^2-5x-23=1 x^2-5x-23=0
x^2-5x-24=0 D=(-5)^2-4+1+(-23)=117
x₁+x₂=5 x₁=(5-√117)/2*1 ≈ -2.9
x₁*x₂=-24 x₂=(5+√117)/2*1 ≈ 7.9
x₁=8 x∈(-∞:(5-√117)/2*1)∪((5+√117)/2*1:+∞)
x₂=-3
3. lg(x+2)+lg(x-2)=lg(5x+8) ОДЗ: x+2>0 => x>-2
ig((x+2)(x-2)|(5x+8)=0 x-2>0 => x>2
x²-4=5x+8 5x+8>0 => x> -1.6
x²-5x-12=0 x>2
D=(-5)²-4*1*(-12)=73
x₁=(5-√73)/2 - лишний корень
x₂=(5+√73)/2
x = (5+√73)/2 ≈ 6.77
1. log_2(4x+5)=log_2(9-2x) ОДЗ: 4х+5>0 => 4x>-5 => x>=-1.25
4x+5=9-2x 9-2x>0 => -2x>-9 => x<4.5
6x=4
x=2/3
2. log3(x^2-5x-23)=0 ОДЗ: x^2-5x-23>0
x^2-5x-23=1 x^2-5x-23=0
x^2-5x-24=0 D=(-5)^2-4+1+(-23)=117
x₁+x₂=5 x₁=(5-√117)/2*1 ≈ -2.9
x₁*x₂=-24 x₂=(5+√117)/2*1 ≈ 7.9
x₁=8 x∈(-∞:(5-√117)/2*1)∪((5+√117)/2*1:+∞)
x₂=-3
3. lg(x+2)+lg(x-2)=lg(5x+8) ОДЗ: x+2>0 => x>-2
ig((x+2)(x-2)|(5x+8)=0 x-2>0 => x>2
x²-4=5x+8 5x+8>0 => x> -1.6
x²-5x-12=0 x>2
D=(-5)²-4*1*(-12)=73
x₁=(5-√73)/2 - лишний корень
x₂=(5+√73)/2
x = (5+√73)/2 ≈ 6.77
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z