Из урны в которой 3 белых и 2 черных шара последовательно без возврата достают шары до тех пор, пока не появится белый шар. составить закон распределения случайной величины ξ - количества извлеченных шаров. найти ожидание этой случайной величины.
→с детальным описанием, применением формул и таблицей распределения←
ответ:
случайная величина х - число извлеченных шаров,
принимает значения 1,2,3,4 с вероятностями
р (1)= 2/5=0,4
р (2)= 3/5 *2/4=0,3
р (3)= 3/5 *2/4 *2/3=0,2
р (4)= 3/5 *2/4 *1/3 *2/2=0,1
проверка: 0,4+0,3+0,2+0,1=1
и строишь таблицу распределения
1-я строка - значения х — 1,2,3,4
2-я строка — соответствующие вероятности
m(х) =0,4*1+ 0,3*2+ 0,2*3+ 0,1*4=2
m(x^2)=0,4*1 +0,3*4+ 0,2*9+ 0,1*16=0,4+ 1,2+ 1,8+ 1,6=5
d(х) =m(x^2)-(m(=5-4=1
буковка там какая-то это сигма - средн. квадр. отклонение
σ=√d=1
функция распределения ступенчатая
f(х) =0 при х≤1
f(х) =0,4 при 1
f(x)=0,7 при 2
f(x)=0,9 при 3
f(x)=1 при х> 4 (0,9+0,1=1)
вероятность р (х> 2) найдешь сама и проверь вычисления