Из пунктов А и В навстречу друг другу одновременно выехали автомобнль и мотоциклист. Когда они встретились, оказалось, что мотоциклист проехал всего четыре девятых пути. Найдите скорость автомобиля, если известно, что она на 15 км/ч больше скорости мотоциклиста. Затпишите решение и ответ.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-1)^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-(-1))/(2*1)=(5-(-1))/2=(5+1)/2=6/2=3;x_2=(-√25-(-1))/(2*1)=(-5-(-1))/2=(-5+1)/2=-4/2=-2.
Выражение: x^2+3*x-4=(x-1)(x+4)
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=3^2-4*1*(-4)=9-4*(-4)=9-(-4*4)=9-(-16)=9+16=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-3)/(2*1)=(5-3)/2=2/2=1;x_2=(-√25-3)/(2*1)=(-5-3)/2=-8/2=-4.
Выражение: x^2-8*x+15=(x-5)(x-3)
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-8)^2-4*1*15=64-4*15=64-60=4;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(=√4-(-8))/(2*1)=(2-(-8))/2=(2+8)/2=10/2=5;x_2=(-=√4-(-8))/(2*1)=(-2-(-8))/2=(-2+8)/2=6/2=3.
Выражение: x^2+8*x+12=(x+2)(x+6)
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=8^2-4*1*12=64-4*12=64-48=16;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√16-8)/(2*1)=(4-8)/2=-4/2=-2;x_2=(-√16-8)/(2*1)=(-4-8)/2=-12/2=-6.
Найти производную
Приравнять производную к нулю и найти х, это будет точка экстремума
-2x - 8 = 0
2x = -8
x = -4
Функция y = -x²- 8x + 2 - квадратичная парабола, ветки направлены вниз, Значит, в точке x = -4 будет максимум.
б) y = 15 + 48x - x³
Найти производную
Приравнять производную к нулю
Дальше можно через знак производной, либо через соседние точки
x = 4 Подставить в исходную функцию, а затем соседнее значение
Т.к. y(5) < y(4), значит функция y = -x²- 8x + 2 на интервале х∈[4; +∞) убывает, точка х = 4 является максимумом.
x = -4
Т.к. y(-5) > y(-4), значит функция y = -x²- 8x + 2 на интервале
х∈(-∞;-4] убывает, точка х = -4 является минимумом.