Из пункта А в пункт В вышел пешеход. Через 1,5 часа навстречу ему из пункта В выехал велосипедист, скорость которого на 8 км/ч больше скорости пешехода. С какой скоростью двигался велосипедист, если расстояние от А до В равно 38 км?
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
1) Ставим 1 том первым. Вторым может быть любой, кроме 4. Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта. Всего 24*4 = 96 вариантов. 2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта. Остальные 3 тома как угодно. Это 6 вариантов. Всего 4*3*6 = 72 варианта. 3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов. Второй - любой, кроме 4. Это 3 варианта. Четвертый - тоже любой, кроме 4. Это 2 варианта. Пятый и шестой - какие угодно. Это 2 варианта. Всего 5*3*2*2 = 60 вариантов. 4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов. 5) Ставим 1 том пятым. Это аналогично 2). 72 варианта. 6) Ставим 1 том последним. Это аналогично 1). 96 вариантов. Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта.
Всего 24*4 = 96 вариантов.
2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта.
Остальные 3 тома как угодно. Это 6 вариантов.
Всего 4*3*6 = 72 варианта.
3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов.
Второй - любой, кроме 4. Это 3 варианта.
Четвертый - тоже любой, кроме 4. Это 2 варианта.
Пятый и шестой - какие угодно. Это 2 варианта.
Всего 5*3*2*2 = 60 вариантов.
4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов.
5) Ставим 1 том пятым. Это аналогично 2). 72 варианта.
6) Ставим 1 том последним. Это аналогично 1). 96 вариантов.
Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.