Чтобы избавиться от корня в знаменателе, нужно умножить знаменатель на этот же корень Допустим, дан пример (2√4)/(7√5)-домножаем числитель и знаменатель на √5 Получаем (2√4*√5)/7 Упрощаем- (2√20)/7 НО!этот действует только когда в знаменателе одночлен! Если в знаменателе многочлен. то нужно домножать на такой же многочлен с противоположным знаком Пример 2/(2-√7)-домножаем на скобку (2+√7) *не забываем менять знак так же числитель и знаменатель. потом раскрываем скобки и упрощаем. В итоге корни в знаменателе сократятся.
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
Допустим, дан пример
(2√4)/(7√5)-домножаем числитель и знаменатель на √5
Получаем
(2√4*√5)/7
Упрощаем- (2√20)/7
НО!этот действует только когда в знаменателе одночлен!
Если в знаменателе многочлен. то нужно домножать на такой же многочлен с противоположным знаком
Пример
2/(2-√7)-домножаем на скобку (2+√7) *не забываем менять знак
так же числитель и знаменатель.
потом раскрываем скобки и упрощаем.
В итоге корни в знаменателе сократятся.