ответ: P=20/39
Объяснение:
Найдем общее количество вариантов , когда в 5-ти взятых билетах есть первый из выйгрышных билетов , а второй туда не попал .
В этом случае другой выйгрышный билет исключается из возможных 13 кандидатов. А первый билет уже присутствует в данной пятерке.
Таким образом общее число таких вариантов :
C (11 ;4 ) = 11!/(4!*7!)
Обратная ситуация , когда второй из выйгрышных билетов есть в пятерке , а первого нет .
Таким образом общее число благоприятных исходов :
Nблаг = 2*11!/(4!*7!)
Число всех исходов :
Nобщ = С (13;5) = 13!/(5!*8!)
P= Nблаг/Nобщ = (2*11!/(4!*7!) )/( 13!/(5!*8!) ) = (2*11!*5!*8! )/ (13!*4!*7! )=
= (2*5*8)/(12*13) = (2*5*2)/(3*13) = 20/39
ответ: P=20/39
Объяснение:
Найдем общее количество вариантов , когда в 5-ти взятых билетах есть первый из выйгрышных билетов , а второй туда не попал .
В этом случае другой выйгрышный билет исключается из возможных 13 кандидатов. А первый билет уже присутствует в данной пятерке.
Таким образом общее число таких вариантов :
C (11 ;4 ) = 11!/(4!*7!)
Обратная ситуация , когда второй из выйгрышных билетов есть в пятерке , а первого нет .
Таким образом общее число благоприятных исходов :
Nблаг = 2*11!/(4!*7!)
Число всех исходов :
Nобщ = С (13;5) = 13!/(5!*8!)
P= Nблаг/Nобщ = (2*11!/(4!*7!) )/( 13!/(5!*8!) ) = (2*11!*5!*8! )/ (13!*4!*7! )=
= (2*5*8)/(12*13) = (2*5*2)/(3*13) = 20/39