В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
unisens
unisens
17.06.2020 03:34 •  Алгебра

Исследовать функцию на монотонность и экстремумы y=2x^5+5x^4-10x^3+3

Показать ответ
Ответ:
Spudi14
Spudi14
02.10.2020 16:40
Чтобы найти экстремумы, надо найти первую производную от функции и приравнять её к нулю. Где она равна 0, там и экстремумы. Потом берём вторую производную и смотрим какой знак она имеет в точке экстремума. Если больше нуля, значит это точка минимума, если меньше нуля, значит это точка максимума.
первая производная равна: 10x^4+20x^3-30x^2. Приравниваем к нулю и ищем корни уравнения: 10x^4+20x^3-30x^2=0; Разделим уравнение на x^2, получим: 10x^2+20x-30=0; Решаем квадратное уравнение:
D=20^2-(4*10*(-30))=1600;
x1=(-20+40)/20=1
x2=(-20-40)/20=-3

Берём вторую производную: 40x^3+60x^2-60x подставляем найденные корни и смотрим на знак. x1=1) 40*1^3+60*1^2-60*1=40 это больше нуля, значит в точке x1=1 локальный минимум исходной функции.
x2=-3) 40*(-3)^3+60*(-3)^2-60*(-3)=-360 это меньше нуля, значит в точке x2=-3 локальный максимум исходной функции.
Значит исходная функция от -бесконечности до -3 возрастает, от -3 до 1 убывает, и от 1 до +бесконечности снова возрастает.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота