Используя основное свойство алгебраической дроби, замени знак ∗ алгебраическим выражением так, чтобы получилось верное равенство. (Вводи с латинской раскладки!) ∗\13p=a^\p.
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Нельзя.
Объяснение:
Так как вариантов слишком много, то придется зайти с другой стороны.
Для начала следует вычесть единицу, а потом делть на 3 или 4.
2019 не делится на четыре так как оно не четное. На три делится, так как сумма цифр делится на три - 2+0+1+9=12
Разделив на три получаем число 673 и сразу же вычитаем единицу. Полученное число делится и на три и на четыре, потому придется пробовать все варианты.
672/4=168
168-1=167 (не делится на четыре)
167/3=56
56-1=55 (не делится ни на три ни на четыре)
Попробуем другим путем.
672/3=224
224-1=223 (это простое число)
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.