Если число (обозначим его А) даёт такие остатки, то его можно выразить двумя случаями: 1) A=9*x+1 2) A=9*x+8 Возведём в квадрат оба случая: 1) A^2 = (9x+1)^2 = 81*x^2 + 2*9*x + 1 = 81*x^2 + 18*x + 1 2) A^2 = (9x+8)^2 = 81*x^2 + 2*8*9*x+64 = 81*x^2 + 144*x+64 Теперь преобразуем эти записи так, чтобы увидеть, какая часть из них делится на 9, а какая нет: 1) 81*x^2 + 18*x + 1 = 9*(9*x^2+2*x) + 1 2) 81*x^2 + 144*x+ 64 = 9*(9*x^2+16*x)+63 +1 = 9*(9*x^2+16*x+7) +1 Мы видим, что в обоих случаях квадрат записывается в виде 9*выражение+1 = а значит, остаток от деления квадрата на 9 будет равен 1.
1) A=9*x+1
2) A=9*x+8
Возведём в квадрат оба случая:
1) A^2 = (9x+1)^2 = 81*x^2 + 2*9*x + 1 = 81*x^2 + 18*x + 1
2) A^2 = (9x+8)^2 = 81*x^2 + 2*8*9*x+64 = 81*x^2 + 144*x+64
Теперь преобразуем эти записи так, чтобы увидеть, какая часть из них делится на 9, а какая нет:
1) 81*x^2 + 18*x + 1 = 9*(9*x^2+2*x) + 1
2) 81*x^2 + 144*x+ 64 = 9*(9*x^2+16*x)+63 +1 = 9*(9*x^2+16*x+7) +1
Мы видим, что в обоих случаях квадрат записывается в виде 9*выражение+1 = а значит, остаток от деления квадрата на 9 будет равен 1.