Игральную кость бросают дважды.Известно,что сумма выпавших очков оказалась равна 8.Выпишите все элементарные события,благоприятствующие событию: а) "хотя бы 1 раз выпало 5 очков" б) "3 очка не выпало ни разу"
1) Возьмём число 1: сразу же запишем двузначное число с повторяющимися цифрами, т.е. 11. Теперь запишем все числа, с котороми получатся двузначные числа( одна из цифр это 1), т.е. 12,13,14,15,16.(Не будем менять цифры, т.к. эти цыфры все будут в последующих числах). И так, у нас всего получилось 6 двузначных чисел. Если сделать жиу процедуру с каждой цифрой(всего их 6), то всего даузначных чисел получится 6*6=36.<br />2) Так как по условию цифры должны быть различными то мы просто убираем первое действие, которое мы рассматривали при первом условии, тогда с числом 1 получится 5 двузначных чисел, а т.к. у нас 6 цифр , тогда 5*6=30. Надеюсь все правильно :)
Теорія: Функція = при ≠π2+π,∈ℤ є непарною і періодичною з періодом π. Тому досить побудувати її графік на проміжку [0;π2) Оберемо для побудови контрольні точки, через які проведемо плавну криву на координатної площині. 0=0π6=3‾‾√3π4=1π3=3‾√
Потім, відобразивши її симетрично відносно початку координат, отримаємо графік на інтервалі (−π2;π2) Використовуючи періодичність, будуємо графік функції = на всій області визначення. Графік функції = називають тангенсоїдою. Головною гілкою графіка функції = називають гілку, яка знаходиться в інтервалі (−π2;π2) tgxgrafik.png Властивості функції = 1. Область визначення - множина всіх дійсних чисел ≠π2+π,∈ℤ
2. Множина значень - множина ℝ всіх дійсних чисел
3. Функція = періодична з періодом π
4. Функція = непарна
5. Функція = приймає: - значення 0, при =π,∈ℤ; - додатні значення на інтервалах (π;π2+π),∈ℤ; - від'ємні значення на інтервалах (−π2+π;π),∈ℤ.
6. Функція = зростає на інтервалах (−π2+π;π2+π),∈ℤ.
Функція = при ≠π2+π,∈ℤ є непарною і періодичною з періодом π.
Тому досить побудувати її графік на проміжку [0;π2)
Оберемо для побудови контрольні точки, через які проведемо плавну криву на координатної площині.
0=0π6=3‾‾√3π4=1π3=3‾√
Потім, відобразивши її симетрично відносно початку координат, отримаємо графік на інтервалі (−π2;π2)
Використовуючи періодичність, будуємо графік функції = на всій області визначення.
Графік функції = називають тангенсоїдою.
Головною гілкою графіка функції = називають гілку, яка знаходиться в інтервалі (−π2;π2)
tgxgrafik.png
Властивості функції =
1. Область визначення - множина всіх дійсних чисел ≠π2+π,∈ℤ
2. Множина значень - множина ℝ всіх дійсних чисел
3. Функція = періодична з періодом π
4. Функція = непарна
5. Функція = приймає:
- значення 0, при =π,∈ℤ;
- додатні значення на інтервалах (π;π2+π),∈ℤ;
- від'ємні значення на інтервалах (−π2+π;π),∈ℤ.
6. Функція = зростає на інтервалах (−π2+π;π2+π),∈ℤ.