1. Область определения- все х ∈(- ∞; + ∞), , так как график функции существует на все числовой прямой. Множество значений y = sin x + 2; - 1 ≤ sin x ≤ 1; +2 - 1 + 2 ≤ sin x + 2 ≤1 + 2; 1 ≤ sin x + 2 ≤ 3. Множество значений D(y) [1;3]. 2. sin x = √2/2; x= (-1)^k * pi/4 + pi*k; k-Z; Интервалу от минус пи до плюс пи принадлежит х = пи/4. 3. a) sin x = 0; x = pi*k; k∈Z. б) sin x > 0; 2pi*k < x < pi + 2pi*k; k∈Z. в) sin x < 0; - pi + 2pi*k < x < 2 pi*k; k∈ Z
Множество значений y = sin x + 2;
- 1 ≤ sin x ≤ 1; +2
- 1 + 2 ≤ sin x + 2 ≤1 + 2;
1 ≤ sin x + 2 ≤ 3.
Множество значений D(y) [1;3].
2. sin x = √2/2;
x= (-1)^k * pi/4 + pi*k; k-Z;
Интервалу от минус пи до плюс пи принадлежит х = пи/4.
3. a) sin x = 0; x = pi*k; k∈Z.
б) sin x > 0; 2pi*k < x < pi + 2pi*k; k∈Z.
в) sin x < 0; - pi + 2pi*k < x < 2 pi*k; k∈ Z
заменим что x³-8x²=х²(x-8) поэтому
(x-8)(x²-7x-8)=х²(x-8)
одно решение x=8
сокращаем на (x-8), остается
x²-7x-8=х²
-7x-8=0
x=-8/7=
ответ: х₁=8 и
г) (2х + 7)(х² + 12х - 30) - 5х² = 2х²(х + 1)
раскрываем скобки
(2х + 7)(х² + 12х - 30) - 5х²=2x³+24x²-60x+7x²+84x-210-5x²=2x³+26x²+24x-210
аналогично 2х²(х + 1)=2x³+2x²
получаем
2x³+26x²+24x-210=2x³+2x²
2x³+26x²+24x-210-2x³-2x²=0
24x²+24x-210=0
4x²+4x-35=0
D=4²+4*4*35=4²(1+35)=4²6²
√D=4*6=24
x₁=(-4-24)/8=-28/8=-7/2=-3,5
x₂=(-4+24)/8=20/8=5/2=2,5
ответ: x₁=-3,5 и x₂=2,5