Сумма геометрической прогрессии равна:(1) 93=b1*((1-q^3)/(1-q))=b1(1+q+q^2), или(2)b1+b2+b3=93b1.1=b1-48 - первое число арифметической прогрессииСумма арифм.прогресии равна:
S=((b1.1+b3)/2) *3, или (3) S=b1.1+b2+b3
Сумма арифметической прогрессии равна сумме геометрической прогрессии минус 4893-48=((b1.1+b3)/2)*3
90=(b1.1+b3)*3
b1.1+b3=30,из уравнения (3) получим, что b3=b1.1+b2=45, а b2=45-(b1.1+b3)=45-30=15
из ур-я(1) => b1=b2/q, значит сумма геом. прогр. равна:
93=(b2/q)*(1+q+q^2)
93q=b2(1+q+q^2)
15q^2-78q+15=0
q^2-5,2q+1=0
d=27,04-4=23,04
q1,2=(5,2+-4,8)/2
q1=5
q2=0.2
при q=5
b1=15/5=3
b2=15
b3=15*5=75
при q=0,2
b1=15/0,2=75
b3=15*0.2=3
ответ:1)3;15;75 2)75;15;3
Сумма геометрической прогрессии равна:
(1) 93=b1*((1-q^3)/(1-q))=b1(1+q+q^2), или
(2)b1+b2+b3=93
b1.1=b1-48 - первое число арифметической прогрессии
Сумма арифм.прогресии равна:
S=((b1.1+b3)/2) *3, или (3) S=b1.1+b2+b3
Сумма арифметической прогрессии равна сумме геометрической прогрессии минус 48
93-48=((b1.1+b3)/2)*3
90=(b1.1+b3)*3
b1.1+b3=30,
из уравнения (3) получим, что b3=b1.1+b2=45, а b2=45-(b1.1+b3)=45-30=15
из ур-я(1) => b1=b2/q, значит сумма геом. прогр. равна:
93=(b2/q)*(1+q+q^2)
93q=b2(1+q+q^2)
15q^2-78q+15=0
q^2-5,2q+1=0
d=27,04-4=23,04
q1,2=(5,2+-4,8)/2
q1=5
q2=0.2
при q=5
b1=15/5=3
b2=15
b3=15*5=75
при q=0,2
b1=15/0,2=75
b2=15
b3=15*0.2=3
ответ:1)3;15;75 2)75;15;3
f(1)=1³ -4*1² +7*1 -2=1-4+7-2=2
f '(x)=3x² -8x+7
f '(1)=3*1² -8*1+7=3-8+7=2
y=2+2(x-1)=2+2x-2=2x
y=2x - уравнение касательной.
2) f(x)=(3x-2)/(x+1)
f(1)=(3*1-2)/(1+1) = 1/2=0.5
f ' (x)=[3(x+1)-(3x-2)]/(x+1)² =5/(x+1)²
f ' (1)=5/(1+1)² =5/4=1.25
y=0.5+1.25(x-1)=0.5+1.25x-1.25=1.25x-0.75
y=1.25x - 0.75 - уравнение касательной
3) f(x)=√(3-x)
f(-1)=√(3+1)=2
f ' (x)= -1/(2√(3-x))
f ' (-1)= -1/(2√(3+1))= -1/4 = -0.25
y=2-0.25(x+1)= -0.25x+1.75
y= -0.25x+1.75 - уравнение касательной
4) f(x)=cos2x
f(π/4)=cos(π/2)=0
f '(x)= -2sin2x
f '(π/4)= -2sin(π/2)= -2
y=0 -2(x- (π/4))= -2x + (π/2)
y= -2x + (π/2) - уравнение касательной