Так как каждый кубик может быть одного из двух цветов, то количевство возможных башен будет 2*2*2*2*2=32
А малышей 45, значит среди этих башен найдутся две одинаковые (32 разные, 33 -я по любому совпадет с одной из 32 башен)
Доказано
\\Обозначим цвета К и С
Тогда возможные варианты построения башень, начиная с нижнего
1
С
КККСК
ККСКК
КСККК
5
КККCC
ККССК
КССКК
ССККК
4
СКККС
СКСКК
СККСК
КСКСК
КСККС
ККСКС
6
СССКК
КСССК
ККССС
3
ССКСК
ССККС
КССКС
СКССК
СККСС
КСКСС
СКСКС
К
2
СССКС
СКССС
ССКСС
1+5+4+6+3+6+1+2+2+1+1=32 \\\
Замечу, что 1 / x + 1/y = x+y / xy
Пусть x + y = a, xy = b. Тогда получим систему:
a / b = 5/6
a = 5
Из этих двух равенств следует, что b = 6. Возвращаясь к старым переменным, получим:
x + y = 5
xy = 6
Эта система решается обычным методом подстановки:
y = 5 - x
x(5 - x) = 6 (1)
(1) 5x - x² = 6
x² - 5x + 6 = 0
x1 = 3; x2 = 2
Получили два варианта:
x = 3 x = 2
y = 5 - 3 = 2 y = 5 - 2 = 3
Таким образом, фактически система имеет две пары чисел(хотя можно сказать, что у системы одно решение) : (3;2) и (2;3)
Так как каждый кубик может быть одного из двух цветов, то количевство возможных башен будет 2*2*2*2*2=32
А малышей 45, значит среди этих башен найдутся две одинаковые (32 разные, 33 -я по любому совпадет с одной из 32 башен)
Доказано
\\Обозначим цвета К и С
Тогда возможные варианты построения башень, начиная с нижнего
1
С
КККСК
ККСКК
КСККК
С
5
КККCC
ККССК
КССКК
ССККК
4
СКККС
СКСКК
СККСК
КСКСК
КСККС
ККСКС
6
СССКК
КСССК
ККССС
3
ССКСК
ССККС
КССКС
СКССК
СККСС
КСКСС
6
СКСКС
1
К
К
2
СССКС
СКССС
2
ССКСС
1
1
1+5+4+6+3+6+1+2+2+1+1=32 \\\
Замечу, что 1 / x + 1/y = x+y / xy
Пусть x + y = a, xy = b. Тогда получим систему:
a / b = 5/6
a = 5
Из этих двух равенств следует, что b = 6. Возвращаясь к старым переменным, получим:
x + y = 5
xy = 6
Эта система решается обычным методом подстановки:
y = 5 - x
x(5 - x) = 6 (1)
(1) 5x - x² = 6
x² - 5x + 6 = 0
x1 = 3; x2 = 2
Получили два варианта:
x = 3 x = 2
y = 5 - 3 = 2 y = 5 - 2 = 3
Таким образом, фактически система имеет две пары чисел(хотя можно сказать, что у системы одно решение) : (3;2) и (2;3)