Группа 1 отработала 3,5 дня на выполнение запланированных работ. Остальные работы - группа 2 6 закончил день. Группа 2 - единственная группа, которая работает по плану
будет завершено через 5 дней. Каждая группа одна
Сколько дней потребуется на выполнение запланированных работ?
а)x<-1
x²+x=-3x-3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3
x2=-1не удов усл
2)-1≤x<0
-x²-x=3x+3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3 не удов усл
3)x≥0
x²+x=3x+3
x²-2x-3=0
x1+x2=2 U x1*x2=-3
x1=-1не удов усл
x2=3
b
1)x²+x-3=-x
x²+2x-3=0
x1+x2=-2 U x1*x2=-3
x1=-3 не удов усл
x2=1
2)x²+x-3=x
x²-3=0
х=-√3 не удов усл
х=√3
c
1)x<0
-x-x+2=4
-2x=2
x=-1
2)0≤x≤2
x-x+2=4
2=4
нет решения
3)x≥2
x+x-2=4
2x=6
x=3
2
|x²+2x|≥2-x²
1)x<-2
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2 и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈(-∞;-2)
2)-2≤x<0
-x²-2x≥2-x²
x≤-1
x∈[-2;-1]
3)x≥0
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2 и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈[(-1+√5)/2 ;∞)
ответ x∈(-∞;-1] U [(-1+√5)/2 ;∞)
В решении.
Объяснение:
1) Решить систему уравнений:
1/х + 1/у = 3/4
1/х - 1/у = 1/4
Сложить уравнения:
1/х + 1/х + 1/у - 1/у = 3/4 + 1/4
2/х = 1
х = 2;
Подставить значение х в любое из уравнений и вычислить у:
1/2 + 1/у = 3/4
2у + 4 = 3у
2у - 3у = -4
-у = -4
у = 4.
Решение системы уравнений (2; 4).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
2) Решить систему уравнений:
1 + х/(1 - х) =у/(1 - х²)
(х - 5)/(3 - у) = 1/2
Упростить первое уравнение:
(1 - х²) = (1 - х)(1 + х)
Умножить уравнение (все части) на это выражение, чтобы избавиться от дроби:
(1 - х)(1 + х) + х*(1 + х) = у
1 - х² + х + х² = у
1 + х = у;
Упростить второе уравнение:
(х - 5)/(3 - у) = 1/2
Умножить уравнение (все части) на 2(3 - у), чтобы избавиться от дроби:
2*(х - 5) = 3 - у
2х - 10 = 3 - у
2х + у = 13;
Получили упрощенную систему уравнений:
1 + х = у;
2х + у = 13;
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = у - 1
2(у - 1) + у = 13
2у - 2 + у = 13
3у = 15
у = 5;
х = у - 1
х = 4.
Решение системы уравнений (4; 5).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
3) Решить систему уравнений:
5/х + 2/у = 2
10/х - 6/у = -1
Умножить первое уравнение на 3, чтобы решить систему методом сложения:
15/х + 6/у = 6
10/х - 6/у = -1
Сложить уравнения:
15/х + 10/х + 6/у - 6/у = 6 - 1
25/х = 5
5х = 25
х = 5;
Подставить значение х в любое из уравнений и вычислить у:
5/5 + 2/у = 2
1 + 2/у = 2
Умножить уравнение на у, чтобы избавиться от дроби:
у + 2 = 2у
у - 2у = -2
-у = -2
у = 2.
Решение системы уравнений (5; 2).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
4) Решить систему уравнений:
3у/(9 - х²) + х/(х - 3) = 1
(5 - у)/(х - 5) = 2
Упростить первое уравнение:
(9 - х²) = (3 - х)(3 + х);
+ х/(х - 3) = -х(3 - х);
Получили:
3у/(3 - х)(3 + х) - х/(х - 3) = 1
Умножить уравнение (все части) на (3 - х)(3 + х), чтобы избавиться от дроби:
3у - х(3 + х) = (3 - х)(3 + х)
3у - 3х - х² = 9 - х²
Привести подобные члены:
3у - 3х - х² + х² = 9
3у - 3х = 9
Разделить уравнение на 3 для упрощения:
у - х = 3;
Упростить второе уравнение:
(5 - у)/(х - 5) = 2
Умножить уравнение (все части) на (х - 5),чтобы избавиться от дроби:
5 - у = 2(х - 5)
5 - у = 2х -10
Привести подобные члены:
-у - 2х = -15;
Получили упрощённую систему уравнений:
у - х = 3;
-у - 2х = -15;
Сложить уравнения:
у - у - х - 2х = 3 - 15
-3х = -12
х = -12/-3
х = 4;
Подставить значение х в любое из уравнений и вычислить у:
у - х = 3;
у = 3 + 4
у = 7.
Решение системы уравнений (4; 7).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.