В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Марта09
Марта09
03.12.2022 05:55 •  Алгебра

График функции

а) Найти значение аргумента, если значение функции равно 1;0;9
б)Найти значение функции при значении аргумента, равном -4;0;2​


График функции а) Найти значение аргумента, если значение функции равно 1;0;9 б)Найти значение функ

Показать ответ
Ответ:
zakharizh2001
zakharizh2001
29.01.2023 15:20

Объяснение:

Множество A содержится во множестве B (множество B включает множество A), если каждый элемент A есть элемент В:

A \subset B :\Leftrightarrow x \in A \Rightarrow x \in B

Говорят, что множество А содержится в множестве В или множество Аявляется подмножеством множества В ( в этом случае пишут А В ), если каждый элемент множества А одновременно является элементом множества В . Эта зависимость между множествами называется включением. Для любого множества А имеют место включения: ØА и А А

В этом случае A называется подмножеством B, B — надмножеством A. Если , то A называется собственным подмножеством В. Заметим, что \forall M \quad M \subset M,

По определению \forall M \quad \varnothing \subset M ,

Два множества называются равными, если они являются подмножествами друг друга

A = B :\Leftrightarrow A \subset B \land B \subset A

Операции над множествами

Пересечение.

A\cap B := \left\{x| x\in A\land x\in B\right\}

Объединение.

A\cup B := \left\{x| x \in A \lor x \in B\right\}

Свойства.

1.Операция объединения множеств коммутативна

2.Операция объединения множеств транзитивна

3. Пустое множество X является нейтральным элементом операции объединения множеств

Примеры:

1. Пусть A = {1,2,3,4},B = {3,4,5,6,7}. Тогда

2. А={2,4,6,8,10}, В = {3,6,9,12}. Найдём объединение и пересечение этих множеств:

{2,4,6,8, 10,3,6,9,12}, = {6}.

3. Множество детей является подмножеством всего населения

4. Пересечением множества целых чисел с множеством положительных чисел является множество натуральных чисел.

5. Объединением множества рациональных чисел с множеством иррациональных чисел является множество положительных чисел.

6.Нуль является дополнением множества натуральных чисел относительно множества неотрицательных целых чисел.

Диаграммы Венна (Venn diagrams) — общее название целого ряда методов визуализации и графической иллюстрации, широко используемых в различных областях науки и математики: теория множеств, собственно «диаграмма Венна» показывает все возможные отношения между множествами или событиями из некоторого семейства; разновидностями диаграмм Венна служат: диаграммы Эйлера,

Диаграмма Венна четырёх множеств.

Собственно «диаграмма Венна» показывает все возможные отношения между множествами или событиями из некоторого семейства. Обычная диаграмма Венна имеет три множества. Сам Венн пытался найти изящный с симметричными фигурами, представляющий на диаграмме большее число множеств, но он смог это сделать только для четырех множеств (см. рисунок справа), используя эллипсы.

Диаграммы Эйлера

Диаграммы Эйлера аналогичны диаграммам Венна.Диаграммы Эйлера можно использовать, для того, чтобы оценивать правдоподобность теоретико-множественных тождеств.

Задача 1. В классе 30 человек, каждый из которых поёт или танцует. Известно, что поют 17 человек, а танцевать умеют 19 человек. Сколько человек поёт и танцует одновременно?

Решение: Сначала заметим, что из 30 человек не умеют петь 30 - 17 = 13 человек.

Все они умеют танцевать, т.к. по условию каждый ученик класса поёт или танцует. Всего умеют танцевать 19 человек, из них 13 не умеют петь, значит, танцевать и петь одновременно умеют 19-13 = 6 человек.

Задачи на пересечение и объединение множеств.

Даны множества А = {3,5, 0, 11, 12, 19}, В = {2,4, 8, 12, 18,0}.

Найдите множества AU В,

Составьте не менее семи слов, буквы которых образуют подмножества множества

А -{к,а,р,у,с,е,л,ь}.

Пусть A - это множество натуральных чисел, делящихся на 2, а В - множество натуральных чисел, делящихся на 4. Какой вывод можно сделать относительно данных множеств?

На фирме работают 67 человек. Из них 47 знают английский язык, 35 - немецкий язык, а 23 - оба языка. Сколько человек фирмы не знают ни английского, ни немецкого языков?

Из 40 учащихся нашего класса 32 любят молоко, 21 - ли­монад, а 15 - и молоко, и лимонад. Сколько ребят в нашем классе не любят ни молоко, ни лимонад?

12 моих одноклассников любят читать детективы, 18 -фантастику, трое с удовольствием читают и то, и другое, а один вообще ничего не читает. Сколько учеников в нашем классе?

Из тех 18 моих одноклассников, которые любят смотреть триллеры, только 12 не прочь посмотреть и мультфильмы. Сколько моих одноклассников смотрят одни «мультики», если всего в на­шем классе 25 учеников, каждый из которых любит смотреть или триллеры, или мультфильмы, или и то и другое?

Из 29 мальчишек нашего двора только двое не занимают­ся спортом, а остальные посещают футбольную или теннисную секции, а то и обе. Футболом занимается 17 мальчишек, а тенни­сом - 19. Сколько футболистов играет в теннис? Сколько тенниси­стов играет в футбол?

65 % бабушкиных кроликов любят морковку, 10 % любят и морковку, и капусту. Сколько процентов кроликов не прочь по­лакомиться капустой?

В одном классе 25 учеников. Из них 7 любят груши, 11 -черешню. Двое любят груши и черешню; 6 - груши и яблоки; 5 -яблоки и черешню. Но есть в классе два ученика, которые любят все и четверо таких, что не любят фруктов вообще. Сколько учени­ков этого класса любят яблоки?

0,0(0 оценок)
Ответ:
ZHENYAKIM2008
ZHENYAKIM2008
21.10.2022 18:10
Решим не стандартным

1 ученик - А
2 ученик - Б

Получаем:
А            Б
4             5
5             4
5             5
4             4

В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).

А если прибавить к ним еще одного ученика - С. То:

А          Б          С
4          4           4
5          5           5
4          4           5
4          5           5
5          5           4
5          4           4
4          5           4
5          4           5

В итоге получаем

А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?

А вот что получим:

А                      Б
3                      3
4                      4
5                      5
3                      4
4                      3
4                      5
5                      4
3                      5
5                      3

В итоге, мы получили

Нет смысла, добавлять 3 ученика. Уже  и так можно увидеть закономерность.

В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
(2,2)
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
(2,3)
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
(3,2)

А теперь, выведем формулу:
(a,b)=a^b - где a-число оценок, b-число учеников.

В итоге и получаем:
1 случай:
(2,2)=2^2=4
2 случай:
(2,3)=2^3=8
3 случай:
(3,2)=3^2=9

Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
(a,b)=(4,24)=4^{24}=281474976710656

Второй

Для первого ученика существует 4 варианта:
2,3,4,5 
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
\dispaystyle 4\cdot 4=16 - варианта событий.

Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
16\cdot 4=64 - варианта событий.

И так далее. В итоге получаем, что для 24 учеников существует ровно:

4^{24}=281474976710656 - вариантов событий.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота