галя оля и лена ходили в лес за грибами но вопрос сколько они нашли грибов -галя ответила мы с валей нашли 21 гриб -валя сказала мы с леной нашли 27 грибов -а лена сказала мы с галей нашли от грибов докажите что кто то из них ошибся
Пусть скорость теплохода равна х км/ч, тогда скорость по течению равна (x+3) км/ч. Время движения теплохода по озеру равно 9/x, а по течению - 20/(x+3) ч. На весь путь теплоход затратил один час. Составим уравнение
9/x + 20/(x+3) = 1 |*x(x+3)≠0
9(x+3) + 20x = x(x+3)
9x + 27 + 20x = x² + 3x
x² -26x - 27 = 0
По теореме Виета: x₁ = 27 км/ч - скорость теплохода
Надо посчитать определенный интеграл в пределах между точками пересечения прямой и параболы.
Парабола смотрит выпуклостью вверх (отрицательный коэфф. при x квадрат), стало быть считать надо будет интеграл по разности уравнения параболы и прямой:
Пусть скорость теплохода равна х км/ч, тогда скорость по течению равна (x+3) км/ч. Время движения теплохода по озеру равно 9/x, а по течению - 20/(x+3) ч. На весь путь теплоход затратил один час. Составим уравнение
9/x + 20/(x+3) = 1 |*x(x+3)≠0
9(x+3) + 20x = x(x+3)
9x + 27 + 20x = x² + 3x
x² -26x - 27 = 0
По теореме Виета: x₁ = 27 км/ч - скорость теплохода
x₂ = -1 - не удовлетворяет условию
ответ: 27 км/ч.
Парабола смотрит выпуклостью вверх (отрицательный коэфф. при x квадрат), стало быть считать надо будет интеграл по разности уравнения параболы и прямой:
f = -x^2 -6x -5 - (x+1) = -(x^2 +7x +6) = -(x+1)*(x+6)
Корни этого уравнения -6 и -1, и стало быть определенный интеграл надо считать в пределах от -6 до -1 (где парабола возвышается над прямой).
Первообразная интегрируемой функции f выглядит следующим образом:
F = -(1/3)x^3 -(7/2)x^2 -6x
Площадь будет равна S = F(-1) - F(-6)
F(-1) = 1/3 -7/2 +6 = 2.8333
F(-6) = 6*6*6/3 -7*6*6/2 +6*6 = -18
Получается S = 2.8333 - (-18) = 20.8333