Футболист подбросил мяч вверх. Высота над землёй подброшенного мяча меняется по закону h(t)= -gt²/2 +15t, g≈10 m/c² Через сколько секунд мяч упадет на землю?
1) у = √(8 - 0,5х²) Подкоренное выражение не должно быть отрицательным, поэтому 8 - 0,5х² ≥ 0 решаем уравнение 8 - 0,5х² = 0 х² = 16 х1 = -4; х2 = 4 График функции f(x) = 8 - 0.5x² - парабола веточками вниз, положительные значения её находятся в области х между -4 и 4. Таким образом, область определения заданной функции D(y) = [-4; 4]
2) Проверим функцию на чётность-нечётность f(-x) = (-x + 2sinx)/(3cosx + x²) f(-x) = -(x - 2sinx)/(3cosx + x²) Очевидно, что функция нечётная, потому что f(-x) = -f(x) Функция не является периодической, потому что в числителе есть добавка х, а в знаменателе х², которые не являются периодическими. Действительно, f(x + T) = ((-x + T) - 2 sin(x + T))/(3cos(x + T) + (x + T)²) = = ((-x + T) - 2 sinx)/(3cosx + (x + T)²) ≠ f(x) Условие периодичности не выполняется.
3) f(x) = x/2 - 4/x F(x) = 0 x/2 - 4/x = 0 ОДЗ: х≠0 х² - 8 = 0 х² = 8 х1 = -2√2; х2 = 2√2; Функция равна нулю при х =-2√2 и х = 2√2
1)(3x^2-12)/(1-11x)>0
3(x^2-4)/(11(1/11-x))>0
3(x-2)(x+2)/(11(1/11-x))>0
+ - + -
(-2)(1/11)(2)
(-бескон.;-2)объединено(1/11;2)
2)243*(1/81)^{3x-2}=27^{x+3}
3^{5} *(3^(-4})^{3x-2}=(3^3)^{x+3}
3^{5} *3^{-12x+8}=3^{3x+9}
3^{5-12x+8}=3^{3x+9}
3^{13-12x}=3^{3x+9}
13-12x=3x+9
-12x-3x=9-13
-15x=-4
x=4/15
3)я не уверен, что ты правильно написал функцию проверь.
Мне кажется, что f(x)=1+8x-x^2, а не как у тебя 1+8-x^2
Решу для f(x)=1+8x-x^2
f`(x)=8-2x=2(4-x)
f`(x)=0 при 2(4-x)=0
4-x=0
х=4 принадлежит [2;5)
f(2)=1+8*2-2^2=1+16-4=13
f(4)=1+8*4-4^2=1+32-16=17-наибольшее значение
f(5)=1+8*5-5^2=1+40-25=16
4)2cos(x/2)+sqrt{2}=0
cos(x/2)=-sqrt{2}/2
x/2=pi- pi/4+2pi*n
x/2=3pi/4 +2pi*n |*2
x=6pi/4+4pi*n
x=3pi/2+4pi*n, n принадлежит Z
5)16^{x} -5*4^{x}=-4
(4^{x})^{2} -5*4^{x}+4=0 |t=4^{x}
t^2-5t+4=0
t1=1; t2=4
4^{x}=1 4^{x}=4^{1}
4^{x}=4^{0} x=1
x=0
ответ: 0;1
6) log_{\frac{1}{4}}\frac{3x+2}{2x-7}=-1
(3x+2)/(2x-7)=4
3x+2=4(2x-7)
3x+2=8x-28
3x-8x=-2-28
-5x=-30
x=6
Находим ОДЗ: (3х+2)/(2х-7)>0
3(x+2/3)/(2(x-3,5))>0
+ - +
(-2/3)(3,5)
(-бескон., -2/3) объединено(3,5;+бесконечность)
х=6 входит в область определения
ответ: 6
7)27^{x}<9^{x^2-1}
3^{3x}<3^{2x^2-2}
3x<2x^2 -2
2x^2 -3x-2>0
D=25
x1=2, x2=-1/2
8){x-y=7
{log-2(2x+y)=3
{x-y=7
{2x+y=8
y=8-2x
x-(8-2x)=7
x-8+2x=7
3x=15
x=5
y=8-2*5=-2
ответ:(5;2)
Подробнее - на -
Объяснение:
Подкоренное выражение не должно быть отрицательным, поэтому
8 - 0,5х² ≥ 0
решаем уравнение
8 - 0,5х² = 0
х² = 16
х1 = -4; х2 = 4
График функции f(x) = 8 - 0.5x² - парабола веточками вниз, положительные значения её находятся в области х между -4 и 4.
Таким образом, область определения заданной функции D(y) = [-4; 4]
2) Проверим функцию на чётность-нечётность
f(-x) = (-x + 2sinx)/(3cosx + x²)
f(-x) = -(x - 2sinx)/(3cosx + x²)
Очевидно, что функция нечётная, потому что f(-x) = -f(x)
Функция не является периодической, потому что в числителе есть добавка х, а в знаменателе х², которые не являются периодическими.
Действительно, f(x + T) = ((-x + T) - 2 sin(x + T))/(3cos(x + T) + (x + T)²) =
= ((-x + T) - 2 sinx)/(3cosx + (x + T)²) ≠ f(x)
Условие периодичности не выполняется.
3) f(x) = x/2 - 4/x
F(x) = 0
x/2 - 4/x = 0
ОДЗ: х≠0
х² - 8 = 0
х² = 8
х1 = -2√2; х2 = 2√2;
Функция равна нулю при х =-2√2 и х = 2√2