Два уравнения будут равносильными, если они имеют одно и то же множество корней (в случае кратных корней кратности соответствующих корней должны совпадать.)
Решим данное уравнение.
2x-6√x=6√x+x-35; x-12√x+35=0, по Виета √х=5⇒х=25; √х=7⇒х=49, т.е. данное уравнение имеет два корня 25 и 49.
Проверим сначала, являются ли эти корни корнями оставшихся уравнений. 1) (√25+5)²-1=0, т.к. 99≠0, то второй корень можно и не проверять.
2) √(25+6)²-1=0; т.к. 120≠0, второй корень тоже не проверяем.
3) т.к. при переносе вправо единицы получим (√х+6)²=-1, чего быть не может, то это уравнение вообще не имеет корней.
Т.е. первые три уравнения не равносильны данному. Проверим четвертое.
4) (√25-6)²-1=0; 0=0; ( √49-6)²-1=0; 0=0- верное равенство. Значит, корни четвертого уравнения являются корнями первого. Других корней у последнего уравнения нет , т.к. (√x-6)²-1=0 можно упростить , получим
х-12√x+36-1=0;х-12√x+35=0- а это и есть первое уравнение.
Вывод четвертое уравнение равносильно уравнению, данному в условии задачи.
ответ: (√х-6)²-1=0 равносильно уравнению 2x-6√x=6√x+x-35.
Объяснение:
Два уравнения будут равносильными, если они имеют одно и то же множество корней (в случае кратных корней кратности соответствующих корней должны совпадать.)
Решим данное уравнение.
2x-6√x=6√x+x-35; x-12√x+35=0, по Виета √х=5⇒х=25; √х=7⇒х=49, т.е. данное уравнение имеет два корня 25 и 49.
Проверим сначала, являются ли эти корни корнями оставшихся уравнений. 1) (√25+5)²-1=0, т.к. 99≠0, то второй корень можно и не проверять.
2) √(25+6)²-1=0; т.к. 120≠0, второй корень тоже не проверяем.
3) т.к. при переносе вправо единицы получим (√х+6)²=-1, чего быть не может, то это уравнение вообще не имеет корней.
Т.е. первые три уравнения не равносильны данному. Проверим четвертое.
4) (√25-6)²-1=0; 0=0; ( √49-6)²-1=0; 0=0- верное равенство. Значит, корни четвертого уравнения являются корнями первого. Других корней у последнего уравнения нет , т.к. (√x-6)²-1=0 можно упростить , получим
х-12√x+36-1=0;х-12√x+35=0- а это и есть первое уравнение.
Вывод четвертое уравнение равносильно уравнению, данному в условии задачи.
ответ: х∈[-1;-√2/2]∪[√2/2;1]
Объяснение:
неравенство равносильно следующему
-3≤2⁴ˣ²⁻¹-5≤3,
5-3≤2⁴ˣ²⁻¹-5+5≤3+5,
2≤2⁴ˣ²⁻¹≤8
2≤2⁴ˣ²⁻¹≤2³
2¹≤2⁴ˣ²⁻¹≤2³, т.к. функция у=2ˣ возрастающая, то
4х²-1≥1⇒4х²-2≥0 (1)
4х²-1≤3⇒4х²-4≤0 (2)
Решим сначала (1) методом интервалов, х²=1/2;х=±√2/2
-√2/2√2/2
+ - +
х∈(-∞;-√2/2]∪[√2/2;+∞)
решим второе неравенство (2) методом интервалов.
4х²х=±1
-11
+ - +
х∈[1;1]
решением исходного неравенства будет пересечение ответов для (1) и (2), т.е. х∈[-1;-√2/2]∪[√2/2;1]