Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
x₁=π/6+mπ, y₁=π/3+nπ, x₂=-π/6+mπ, y₂=-π/3+nπ, m, n∈Z.
Объяснение:
sinxcosy = 1/4
3tgx=tgy
Преобразуем второе уравнение, умножив обе части на cosxcosy
3tgxcosxcosy=tgycosxcosy
3sinxcosy=sinycosx
Вычтем последнее равенство из первого умноженного на 4
4sinxcosy-3sinxcosy = 1-sinycosx
sinxcosy=1-sinycosx
sinxcosy+sinycosx=1
sin(x+y)=1
x+y=π/2+2kπ, k∈Z
x=-y+π/2+2kπ
Подставим в первое уравнение
sinxcosy = 1/4
sin(-y+π/2+2kπ)cosy = 1/4
sin(-y+π/2+2kπ)=sin(-y+π/2)=cosy Формулы приведения
cosy cosy = 1/4
cos²y = 1/4
cos²y =(1+cos2y)/2 Формула половинного аргумента
(1+cos2y)/2=1/4
1+cos2y=1/2
cos2y=-1/2
2y=±2π/3+2nπ
y=±π/3+nπ
y₁=π/3+nπ, y₂=-π/3+nπ
x₁=-y₁+π/2+2kπ=-π/3-nπ+π/2+2kπ=π/6+mπ, m∈Z
x₂=-y₂+π/2+2kπ=π/3-nπ+π/2+2kπ=5π/6+tπ=-π/6+mπ, m∈Z
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.