- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Объяснение:
S=cosacosbcosy
Так как a,b,y-углы треугольника, то 0<a,b,y<π; a+b+y=π и не острым углом может оказаться не более чем один из них.
Если один из данных углов не острый, то его косинус число не положительное и cosa·cosb·cosy≤0<1/8
Пусть 0<a,b,y<π/2
Используя неравенство Коши(теорема о средних, неравенство между ср. геометр. и ср. арифм.) имеем
Рассмотрим функцию f(x)=cosx. При x∈(0, π/2) функция выпукла вверх.
Значит по теореме Йенсена
Или
Равенство выполняется при при a=b=y=π/3
a+b+y=π⇒a=π-(b+y)⇒cosa=cos(π-(b+y))=-cos(b+y)
cos(b+y)=-cosa, Формулы приведения
cosb·cosy=0,5(cos(b+y)+cos(b-y)). Формула преобразования произведения в сумму
x∈(-π/2, π/2)⇒0<cosx<1. Свойство косинуса
b, y∈(0, π/2)⇒b-y∈(-π/2, π/2)⇒0<cos(b-y)≤1
(cosa-0,5)²≥0⇒-0,5(cosa-0,5)²≤0⇒-0,5(cosa-0,5)²+0,125≤0,125
cosacosbcosy=cosa·0,5·(cos(b+y)+cos(b-y))=0,5cosa(-cosa+cos(b-y))=-0,5cos²a+0,5cosa·cos(b-y)≤-0,5cos²a+0,5cosa=-0,5(cos²a-cosa+0,25)+0,125=-0,5(cosa-0,5)²+0,125≤0,125
Не острые углы рассмотрены в пункте 1
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)