Если отбросить слово прямоугольной, то решаем так. Все боковые ребра пирамиды равны, т.е. вершина пирамиды равноотстоит от его вершин основания, а т.к. наклонные - боковые ребра пирамиды равны, то равны и проекции этой пирамиды, тогда основание высоты - это центр окружности, описанной около ее основания, т.е. точка пересечения диагоналей прямоугольника.
Диагонали прямоугольника равны. найдем одну из них, по Пифагору, т.е. √(24²+18²)=√(576+324)=√900=30/мм/, в точке пересечения диагонали делятся пополам, т.е. половина диагонали равна 30/2=15/мм/.
Найдем теперь высоту пирамиды из треугольника, в котором известна половина диагонали основания 15мм и боковое ребро =25 мм, высота равна h=√(25²-15²)=√(40*10)=20/мм/
Если отбросить слово прямоугольной, то решаем так. Все боковые ребра пирамиды равны, т.е. вершина пирамиды равноотстоит от его вершин основания, а т.к. наклонные - боковые ребра пирамиды равны, то равны и проекции этой пирамиды, тогда основание высоты - это центр окружности, описанной около ее основания, т.е. точка пересечения диагоналей прямоугольника.
Диагонали прямоугольника равны. найдем одну из них, по Пифагору, т.е. √(24²+18²)=√(576+324)=√900=30/мм/, в точке пересечения диагонали делятся пополам, т.е. половина диагонали равна 30/2=15/мм/.
Найдем теперь высоту пирамиды из треугольника, в котором известна половина диагонали основания 15мм и боковое ребро =25 мм, высота равна h=√(25²-15²)=√(40*10)=20/мм/
площадь основания равна s=18*24=432/мм²/
Найдем объем пирамиды v=s*h/3=432*20/3=144*20=2880/мм³/
АВ=18 мм, ВС=24 мм
Найду диагональ основания:
Имеем угол ABC=90⁰. По Пифагору
АС²=d²=18²+24²; d²=900; d=30(мм)
АО=1/2d=1/2*AC=15(мм)
Имеем угол AOS=90⁰. По Пифагору
OS²=h²=25²-15²=400; h=20(мм)
V = 1/3*Sосн*h = 1/3*18*24*20 = 2880(мм³)