Решение: по теореме пифагора сумма квадратов катетов равна квадрату гипотенузы пусть х - наш искомый катет, то второй катет будет х-7, а гипотенуза х+1 составим уравнение: х²+(х-7)² = (х+1)² х²+х²-14х+49 = х²+2х+1 2х²-14х+49 = х²+2х+1 х²-16х+48 = 0
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Давайте начнем решение (4x - 3)(3 + 4x) - 2x(8x - 1) = 0 уравнения с открытия скобок в левой части уравнения.
Применим для этого формулу сокращенного умножения:
(n - m)(n + m) = n2 - m2;
А для открытия второй скобке применим правило умножения одночлена на многочлен:
(4x - 3)(4x + 3) - 2x(8x - 1) = 0;
16x2 - 9 - 2x * 8x + 2x * 1 = 0;
16x2 - 9 - 16x2 + 2x = 0;
16x2 - 16x2 + 2x - 9 = 0;
Перенесем -9 в правую часть уравнения и сменим знак при этом:
2x = 9;
Делим на 2 обе части уравнения:
x = 9 : 2;
Вроде всё:)
x = 4.5.
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7