Графически - самостоятельно Проверим аналитически: уравнение прямой у=kх+b, где (х; у) - точки, через которые она проходит. составим ур-ие прямой, проходящей через точки А и В Система: {-6=2k+b {-6=2k+3-5k <=> {-9=-3k <=> {k=3 {3=5k+b <=> {b=3-5k {b=3-5k {b=-12
Уравнение прямой у=3х-12 Проверим принадлежит ли ей точка С, 1=3*1-12, 1=3-12 1=-9 неверно точка С не принадлежит прямой у=3х-12, а значит, Данные три точки не лежат на одной прямой
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек
Проверим аналитически:
уравнение прямой у=kх+b, где (х; у) - точки, через которые она проходит.
составим ур-ие прямой, проходящей через точки А и В
Система:
{-6=2k+b {-6=2k+3-5k <=> {-9=-3k <=> {k=3
{3=5k+b <=> {b=3-5k {b=3-5k {b=-12
Уравнение прямой у=3х-12
Проверим принадлежит ли ей точка С,
1=3*1-12,
1=3-12
1=-9 неверно точка С не принадлежит прямой у=3х-12, а значит,
Данные три точки не лежат на одной прямой