2) Предположим, что при утверждение справедливо, то есть:
3) Докажем, что при справедливо утверждение:
Доказательство. Преобразуем:
Первое слагаемое делится на 16 по предположению, сделанному на втором шаге.
Рассмотрим второе слагаемое . Первый множитель 8 делится на 8. Заметим, что второй множитель является четным, так как выражение при дает нечетные числа, тогда числа вида являются четными. Таким образом, второе слагаемое делится на .
Итак, оба слагаемых делятся на 16. Значит и вся сумма делится на 16. Доказано.
Объяснение:
решаю задачу с другим условием по согласованию с автором вопроса
Яке значення може приймати градусна міра кута а?
cos (x+a ) = - sin x
по формулам приведения мы знаем что косинус меняется на синус (и наоборот) если добавить угол равный 90 + 180*n
а если добавить угол равный 180*n может поменяться знак но функция не изменится
итак
косинус превратился в синус значит угол а это 90 или 270
далее
при малом х синус положительный
по условию cos (x+a ) = - sin(x) - отрицательный
отрицательный косинус в 2 и 3 четверти
(x+a) должен лежать в 2 или 3 четверти
при малом х нам подходит либо 90 либо 180
смотрим ранее (90 или 270) и то что получили только что (90 или 180) и понимаем что ответ 90 - это ответ
1) Проверим справедливость утверждения при :
2) Предположим, что при утверждение справедливо, то есть:
3) Докажем, что при справедливо утверждение:
Доказательство. Преобразуем:
Первое слагаемое делится на 16 по предположению, сделанному на втором шаге.
Рассмотрим второе слагаемое . Первый множитель 8 делится на 8. Заметим, что второй множитель является четным, так как выражение при дает нечетные числа, тогда числа вида являются четными. Таким образом, второе слагаемое делится на .
Итак, оба слагаемых делятся на 16. Значит и вся сумма делится на 16. Доказано.