В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Coolplay
Coolplay
25.11.2022 10:00 •  Алгебра

Е. Знайдіть всі значення хпри яких дріб дорівнює нулю:
Варіант 1
х3 – х2 - 12х
х+ 3​

Показать ответ
Ответ:
kerimagaevakk
kerimagaevakk
17.08.2022 21:34
Ну, почему на девять: для первой книги у него 10 вариантов, а для второй - 9 (одну-то он уже выбрал!).
Почему пополам: потому что порядок неважен. Подумай сам - например, книголюб выбрал книги 1 и 2 - всё отлично. А потом выбрал 2 и 1. В данном случае это одно и то же, то есть этот вариант мы посчитали два раза, как и любой другой. С девочками-мальчиками то же самое, порядок их выбора не имеет значения.
Вообще, число выбрать k предметов из n без учёта порядка (!) называется числом сочетаний (читается "цэ из эн по ка" и вычисляется оно как
C_n^k = \frac{n!}{k!(n-k)!}.

Дополнительно: бывают задачи, когда порядок всё-таки существенен. Число выбрать k предметов из n с учётом порядка называется числом размещений (читается "а из эн по ка" и вычисляется как
A_n^k = \frac{n!}{k!}.
Здесь как раз делить ничего не нужно.
0,0(0 оценок)
Ответ:
llopatniseva
llopatniseva
12.01.2023 15:32
\sin \frac{ \pi }{3}; \sin \frac{ 7\pi }{5}; \sin \frac{2 \pi }{5}; \sin \frac{ 6\pi }{7}

Числа \sin \frac{ \pi }{3}; \sin \frac{2 \pi }{5}; \sin \frac{ 6\pi }{7} положительны, так как синус в 1 и 2 четвертях положителен. Число \sin \frac{ 7\pi }{5} отрицательное, так как синус в 3 четверти отрицателен. Значит, \sin \frac{ 7\pi }{5} - наименьшее число.

Запишем оставшиеся числа, при необходимости преобразовав их так, чтобы под знаком синуса находился угол 1 четверти:
\sin \frac{ \pi }{3}; \sin \frac{2 \pi }{5}; \sin \frac{ 6\pi }{7} =\sin( \pi - \frac{ \pi }{7})=\sin \frac{ \pi }{7}

При увеличении аргумента синуса от 0 до \frac{ \pi }{2} значение синуса также возрастает от 0 до 1. Значит, осталось расположить аргументы синусов в порядке возрастания.

\frac{ \pi }{3}; \frac{ 2\pi }{5}; \frac{ \pi }{7}
Приведем числа к наименьшему общему знаменателю 3\cdot5\cdot7=105:
\frac{ \pi }{3} =\frac{ 35\pi }{105}
\frac{ 2\pi }{5} =\frac{ 42\pi }{105}
\frac{ \pi }{7} =\frac{ 15\pi }{105}
Значит, \frac{ \pi }{7} \ \textless \ \frac{ \pi }{3} \ \textless \ \frac{ 2\pi }{5}
Тогда, \sin\frac{ \pi }{7} \ \textless \ \sin\frac{ \pi }{3} \ \textless \ \sin \frac{ 2\pi }{5}

Учитывая ранее выявленное отрицательное число \sin \frac{7 \pi }{5} и равенство \sin \frac{6 \pi }{7} =\sin \frac{ \pi }{7} получаем цепочку:
\sin \frac{ 7\pi }{5}; \sin \frac{ 6\pi }{7}; \sin \frac{ \pi }{3}\sin \frac{2 \pi }{5}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота