Два тела движутся по прямой из одной и тойже точки. первое тело движется со скоростью v=3t^2+4t м\с второе со скоростью v=6t+12 м\с в какой момент и на каком расстоянии от начальной точки произойдет их встреча
В условие задачи дано, что тела начали двигаться из одной и той же точки, поэтому их пути дол встречи будут равны. Найдём уравнение пути каждого из тел
В условие задачи дано, что тела начали двигаться из одной и той же точки, поэтому их пути дол встречи будут равны. Найдём уравнение пути каждого из тел
S1 = ∫ (3t^2 + 4t) dt = t^3 + 2t^2S2 = ∫ (6t + 12) dt = 3t^2 + 12t
Постоянные интегрирования без начальных условиях:
t = 0, S = 0, будут равны нулю.
Встреча этих тел произойдёт при S1 = S2, откуда
t^3 + 2t^2 = 3t^2 + 12t или
t^3 - t^2 - 12t = 0
Решим это уравнение
t (t^2 - t - 12) = 0
t (t - 4)(t + 3) = 0
t = 0, t = 4, t = - 3
В момент t = 4c произойдёт встреча этих тел после начала движения.
Из уравнений пути находим
S1 = S2 = 4^3 + 2*4^2 = 96 м