Дракон, который сидел в пещере и охранял сокровища, украденные у гномов, через некоторое время согласился выплачивать процент жителям Дейла, которые подрядились оберегать его сон, поскольку сокровищ было несметное количество, а дракона без конца беспокоили гномьи экспедиции. Хороший же сон обеспечил бы Смаугу возможность периодически грабить другие сокровищницы и приумножать горы золота. Проценты стали начисляться со дня, в который это решение было принято, до срока, когда стороны решат расторгнуть договор. Проценты эти жители города договорились периодически забирать, для того чтобы покупать хорошие дубовые доски для изготовления бочек. 1 января 20950 года, за несколько десятков лет до рождения Фродо Бэггинса, был заключён этот договор. Сокровища в пещере были оценены сторонами в размере 2 млн золотых, а процент, который дракон согласился отдавать, был равен 5% в год от суммы оценки, срок договора определили немалый — 54 лет (год). Причитающиеся проценты можно будет забирать первого числа каждого следующего месяца. Смогут ли мастера купить досок в июле 20952 года на сумму 77 тыс. золотых, если сделать это они могут только на проценты от сокровища? (В ответе укажи возможность или невозможность покупки и сумму, которые жители города получат к этому сроку. ответ округли до тысяч.)
4х²-2х+3=0
D=(-2)²-4×4×3=4-48=-44 D<0, уравнение не имеет корней
----------------------------------------------------------------------------
5х²+26х=24
5х²+26х-24=0
D=26²-4×5×(-24)=676+480=1156 D>0
х₁=
х₂=
х₁=0,8
х₂=-6
-------------------------------------------------------------------------
3х²-5х=0
D=5²-4×3×0=25-0=25 D>0
х₁=
х₂=
х₁=1,667
х₂=0
--------------------------------------------------------------------
6-2х²=0
-2х²+6=0
D=0²-4×(-2)×6=0+48=48 D>0
х₁=
х₂=
х₁=-1,732
х₂=1,732
------------------------------------------------------------------
t²=35-2t
t²+2t-35=0
D=2²-4×1×(-35)=4+140=144
t₁=
t₂=
t₁=5
t₂=-7
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.
АВ{1;3}, |AB|=√(1+9)=√10.
BC{3;1}, |BC|=√(9+1)=√10.
CD{-1;-3},|CD|=√(1+9)=√10.
AD{3;1}, |AD|=√(9+1)=√10.
Итак, в четырехугольнике все стороны равны.
Ромбом называется параллелограмм, у которого все стороны равны.
Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм.
У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом.
Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат.
Следовательно, четырехугольник АВCD - РОМБ.
Что и требовалось доказать...