b) Sₙ (cумма n первых членов геометрической прогрессии) = (b₁ · (qⁿ - 1)) ÷ (q - 1)
Значит S₅ = (b₁ · (q⁵ - 1)) ÷ (q - 1)
Осталось найти b₁
bₙ = b₁ · q⁽ⁿ⁻¹⁾
b₂ = b₁ · q
b₁ = b₂ ÷ q = 3 ÷ 1/3 = 9
Подставляем это значение в формулу:
S₅ = (9 · ((1/3)⁵ - 1)) ÷ ((1/3) - 1) = 13 целых и 4/9 (лучше записывать это дробью, т.к. в десятичном виде здесь будет бесконечное кол-во чисел после запятой - 13.4444444...)
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2x
Знаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1
Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1
Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).
ответ: выделен жирным шрифтом.
a) Sₙ (cумма n первых членов арифметической прогрессии) = (( a₁ + aₙ) · n) ÷ 2
Значит S₅ = (( a₁ + a₅) · 5) ÷ 2
Осталось найти a₁ и a₅
aₙ = a₁ + d · ( n – 1 )
Значит:
a₂ = a₁ + d · (2 - 1) И a₅ = a₁ + d · (2 - 1)
a₁ = a₂ - d = 3 - 4 = -1 a₅ = -1 + 4 · 4 = 15
Подставляем эти значения в формулу:
S₅ = (( -1 + 15) · 5) ÷ 2 = (14 · 5) ÷ 2 = 7 · 5 = 35
ответ: 35
b) Sₙ (cумма n первых членов геометрической прогрессии) = (b₁ · (qⁿ - 1)) ÷ (q - 1)
Значит S₅ = (b₁ · (q⁵ - 1)) ÷ (q - 1)
Осталось найти b₁
bₙ = b₁ · q⁽ⁿ⁻¹⁾
b₂ = b₁ · q
b₁ = b₂ ÷ q = 3 ÷ 1/3 = 9
Подставляем это значение в формулу:
S₅ = (9 · ((1/3)⁵ - 1)) ÷ ((1/3) - 1) = 13 целых и 4/9 (лучше записывать это дробью, т.к. в десятичном виде здесь будет бесконечное кол-во чисел после запятой - 13.4444444...)
ответ: 13 целых и 4/9
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2xЗнаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).