Докажите неравенство:
а) (x – 2)2 > x(x – 4); б) a2 + 1 ≥ 2(3a – 4).
2. Известно, что а < b. Сравните:
а) 21а и 21b; б) –3,2а и –3,2b; в) 1,5b и 1,5а.
Результат сравнения запишите в виде неравенства.
3. Известно, что 2,6 < < 2,7. Оцените:
а) 2 ; б) – .
4. Оцените периметр и площадь прямоугольника со сторонами а см и b см, если известно, что 2,6 < а < 2,7, 1,2 < b < 1,3.
5. К каждому из чисел 2, 3, 4 и 5 прибавили одно и то же число а. Сравните произведение крайних членов получившейся последовательности с произведением средних членов.
В а р и а н т 2
1. Докажите неравенство:
а) (x + 7)2 > x(x + 14); б) b2 + 5 ≥ 10(b – 2).
2. Известно, что а > b. Сравните:
а) 18а и 18b; б) –6,7а и –6,7b; в) –3,7b и –3,7а.
Результат сравнения запишите в виде неравенства.
3. Известно, что 3,1 « 3,2. Оцените:
а) 3 ; б) – .
4. Оцените периметр и площадь прямоугольника со сторонами а см и b см, если известно, что 1,5 < а < 1,6, 3,2 < b < 3,3.
5. Даны четыре последовательных натуральных числа. Сравните произведение первого и последнего из них с произведением двух средних чисел.
Алгоритм решения подобной системы прост:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
а квадратных неравенств
Алгоритм решения этой системы абсолютно аналогичен алгоритму при решении системы линейных неравенств:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений