Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
3^(2sinx·tgx)·3^(3tgx)=3^(-1/cosx);
3^(2sinx·tgx+3tgx)=3^(-1/cosx);
2sinx·tgx+3tgx=-1/cosx;
(2sinx·tgx+3tgx)*cosx=-1;
2sinx·tgx*cosx+3tgx*cosx=-1;
Так как tgx=sinx/cosx, получаем
2sin²x+3sinx+1=0;
sinx=t, -1≤t≤1;
2t²+3t+1=0;
D=9-8=1;
t1=(-3-1)/4=-1;
t2=(-3+1)/4=-1/2;
sinx=-1;
x=-π/2+2πn, n∈Z; (1)
или
sinx=-1/2;
x=(-1)^k*arcsin(-1/2)+πk, k∈Z;
x=(-1)^(k+1)*arcsin 1/2+πk, k∈Z;
x=(-1)^(k+1)*π/6+πk, k∈Z. (2)
Проверим ОДЗ:
cosx≠0;
x≠π/2+πn, n∈Z.
Таким образом, корень (1) не подходит.
ответ: (-1)^(k+1)*π/6+πk, k∈Z.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.