В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
miramill
miramill
15.02.2021 15:45 •  Алгебра

Докажите, что множество чисел вида \frac{1}{3k} , где k принадлежит N , счетно.

Показать ответ
Ответ:
vanyazoro
vanyazoro
15.08.2021 14:38

Рассмотрим множество A, заданное в условии:

A=\{\frac{1}{3k} :k \in \mathbb {N}\}

и множество натуральных чисел ℕ. Замечу, что при любом k дробь вида \frac{1}{3k} является несократимой, то есть если выписывать такие дроби, начиная с k = 1 и увеличивая каждый раз переменную k на 1, ни одна из них не повторится (так как знаменатель постоянно увеличивается).

Покажем, что между этими двумя множествами можно установить взаимно однозначное соответствие. Для этого всем дробям вида \frac{1}{3k}, где k \in \mathbb {N}, поставим в соответствие число k. С одной стороны, согласно построению каждой такой дроби будет соответствовать натуральное k, притом единственное. С другой стороны, для каждого натурального k можно указать единственную (смотри замечание в предыдущем абзаце) дробь вида \frac{1}{3k}, и все они будут принадлежать множеству A, поскольку k пробегает все натуральные значения. Итак, построенное соответствие действительно взаимно однозначное. А раз множество ℕ счетное, то и множество A также счетное.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота