Сначала раскроем (1 - 2sinx)² = 1 - 4sinx + 4sin²x. Теперь попробуем преобразовать данное нам равенство так, чтобы получить нужное значение. Распишем ctgx: ctgx = . Нужно заметить, что sinx ≠ 0 (знаменатель), т.е. x ≠ πn, n ∈ Z. = -1 Домножим обе части на sinx: мы заранее поставили условие, что sinx ≠ 0. cos²x = -sinx Распишем cos²x как 1 - sin²x (по основному тригонометрическому тождеству): 1 - sin²x = -sinx sin²x - sinx - 1 = 0 Вспомним, значение чего мы ищем. Нам нужно знать, чему равно 1 - 4sinx + 4sin²x. Тогда домножим наше уравнение на 4: 4sin²x - 4sinx - 4 = 0 4 разложим как 5 - 1: 4sin²x - 4sinx - 5 + 1 = 0 4sin²x - 4sinx + 1 = 5 Это и есть наш ответ. Значение выражения (1 - sinx)² = 5.
ответ: 5 при x ≠ πn, n ∈ Z. Думаю, что можно не оговариваться насчет допустимых значений x (смотря как в школе пишете, но вряд ли будет лишним), но всегда нужно иметь в виду, когда ctgx определен.
Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Распишем ctgx: ctgx = . Нужно заметить, что sinx ≠ 0 (знаменатель), т.е. x ≠ πn, n ∈ Z.
= -1
Домножим обе части на sinx: мы заранее поставили условие, что sinx ≠ 0.
cos²x = -sinx
Распишем cos²x как 1 - sin²x (по основному тригонометрическому тождеству):
1 - sin²x = -sinx
sin²x - sinx - 1 = 0
Вспомним, значение чего мы ищем. Нам нужно знать, чему равно 1 - 4sinx + 4sin²x. Тогда домножим наше уравнение на 4:
4sin²x - 4sinx - 4 = 0
4 разложим как 5 - 1:
4sin²x - 4sinx - 5 + 1 = 0
4sin²x - 4sinx + 1 = 5
Это и есть наш ответ. Значение выражения (1 - sinx)² = 5.
ответ: 5 при x ≠ πn, n ∈ Z.
Думаю, что можно не оговариваться насчет допустимых значений x (смотря как в школе пишете, но вряд ли будет лишним), но всегда нужно иметь в виду, когда ctgx определен.
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.