Возрастающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)Убывающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)>f(х2) Если k>0, то функция убывает на промежутке (0;+Y) и на промежутке (-Y;0). Если k<0, то функция возрастает на промежутке (-Y;0) и на промежутке (0;+Y). Графиком функции является гипербола. F(x) = k/x k = 1; x1=1; x2=2 f(1)=1/1 = 1 f(2) = 1/2 = 0.5 f(1) > f(2) k = -1; x1=-1; x2=-2 f(-1)=-1/1 = -1 f(-2) = -1/2 = -0.5 f(-1)< f(-2)
неравенство f(х1)Убывающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется
неравенство f(х1)>f(х2)
Если k>0, то функция убывает на промежутке (0;+Y) и на промежутке
(-Y;0). Если k<0, то функция возрастает на промежутке (-Y;0) и на
промежутке (0;+Y).
Графиком функции является гипербола.
F(x) = k/x
k = 1; x1=1; x2=2
f(1)=1/1 = 1
f(2) = 1/2 = 0.5
f(1) > f(2)
k = -1; x1=-1; x2=-2
f(-1)=-1/1 = -1
f(-2) = -1/2 = -0.5
f(-1)< f(-2)