В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
KateKeta
KateKeta
20.10.2020 02:54 •  Алгебра

Докажите, что если n - натуральное число, то n^2+n+4 не делится на 11

Показать ответ
Ответ:
Фари228
Фари228
03.10.2020 07:57
Непосредственной прверкой убеждаемся, что утверждение верно для всех n от  0 до 10 (0-число не натуральное, но проверка нам пригодится дальше). (числа 4,6,10,16,24,34,46,60,76,94 на 11 не делятся)
число представим в виде n*(n+1)+4=Н
Пусть  n=11к+м
где м меньше 11 и больше  либо равно  0, а к любое целое. Понятно , что любое число больше 10 можно представить в таком виде.

Н=121к*к+11к*(2м+1)+м*(м+1)+4

Н  может делиться на 11, только если
 м*(м+1)+4
делится на 11, но для всех м меньше 11 мы уже проверили, что этого быть не может.

 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота