Обычно функции y = [x] и y = {x} определятся так: y = [x] - наибольшее целое число, не превосходящее x y = {x} ≡ x - [x] - дробная часть x
График функции y = [x] - набор ступенек, y = n, если n <= x < n + 1 . График y = [x] + 4 - тот же график, но сдвинутый на 4 единицы вверх.
График функции y = {x} на полуинтервале [0, 1) совпадает с y = x, а дальше повторяется с периодом 1. y = {x + 2} ничем не отличается, так как прибавление целого числа никак не меняется дробную часть. Можно понять это и по-другому: y = {x + 2} это график y = {x}, сдвинутый на 2 единицы влево, но так как функция периодична с периодом 1, ничего не изменится.
2
3
2x³-3x²-11x+6 |x-3
2x³-6x² 2x^2+3x-2
---------------
3x²-11x
3x²-9x
-----------------
-2x+6
-2x+6
---------------
0
x=-2 2*4+3*(-2)-2=8-6-2=0
4
15^9 оканчивается на 5
26^9 оканчивается на 6
39^9
в 1 оканчивается на 9
во 2 оканчивается на 1
в 3 оканчивается на 9
.............................................
в 9 оканчивается на 9 (в нечетной степени)
5+6+9=20,значит оканчивается на 0
5
99^9 оканчивается на 9, значит (99^99)^9 оканчивается на 9 (см 4)
6
x^4+6x³+3x²+ax+b |x²+4x+3
x^4+4x³+3x² x²+2x-8
----------------------
2x³+ +ax
2x²+8x²+6x
----------------------------
-8x²+(a-6)x+b
-8x²-32x-24
-----------------------------
0
a-6=-32⇒a=-32+6=-26
b=-24
y = [x] - наибольшее целое число, не превосходящее x
y = {x} ≡ x - [x] - дробная часть x
График функции y = [x] - набор ступенек, y = n, если n <= x < n + 1 . График y = [x] + 4 - тот же график, но сдвинутый на 4 единицы вверх.
График функции y = {x} на полуинтервале [0, 1) совпадает с y = x, а дальше повторяется с периодом 1. y = {x + 2} ничем не отличается, так как прибавление целого числа никак не меняется дробную часть. Можно понять это и по-другому: y = {x + 2} это график y = {x}, сдвинутый на 2 единицы влево, но так как функция периодична с периодом 1, ничего не изменится.