ОДЗ - область допустимых значений. Т.е. когда мы сокращаем что-либо в числителе и знаменателе, то мы можем потом включить это число в решения. То есть, например, в первом номере мы сокращаем скобку y-2. Тем самым мы сознательно "пропускаем" в решения (если бы мы не просто упрощали, а решали такое уравнение). Но эта скобка стоит у нас в знаменателе. А знаменатель не может быть равен 0, т.к. на 0 делить нельзя. Значит нужно исключить решение такого уравнения: y-2=0, т.е. y не равен 2. В первом номере скобку y^2+4 мы не выносим в ОДЗ, потому что если мы будем решать такое уравнение: y^2+4=0, то увидим, что оно никогда не будет равно 0. Квадрат любого числа - число неотрицательное по определению, а неотрицательное+положительное=положительное, т.е. не равное 0. Поэтому эту скобку мы не вносим в ОДЗ. Во втором номере мы сокращаем a^2, т.е. автоматически "пропускаем" a=0. Значит нужно его исключить. Также мы сокращаем скобку a-1, значит нужно исключить решение уравнения a-1=0, т.е. a не равно 1.
42.
(b+6)(b-6)-b(b+5) при b= -3/5
(b+6)(b-6)-b(b+5)=b²-36-b²-5b=-36-5b
-36-5b=-36-5(-3/5)=-36+3=39
43.
(3-x)²+(4-x)(4+x) при x=5/6
(3-x)²+(4-x)(4+x)=9-6x+x²+16-x²=25-6x
25-6x=25-6•5/6=25-5=20
44.
(2+a)²+(5-a)(5+a) при а=-3/4
(2+a)²+(5-a)(5+a)=4+4а+а²+25-а²=29+4а
29+4а=29+4(-3/4)=29-3=26
45.
(4-с)²+(2-с)(2+с) при с=-3/8
(4-с)²+(2-с)(2+с)=16-8с+с²+4-с²=20-8с
20-8с=20-8(-3/8)=20+3=23
46.
(m+1)²+(6-m)(6+m) при m=1/2
(m+1)²+(6-m)(6+m)=m²+2m+1+36-m²=36+2m
36+2m=36+2•1/2=36+1=37
47.
-m(m+2)+(m+3)(m-3) при m=1/2
-m(m+2)+(m+3)(m-3)=-m²-2m+m²-9=-2m-9
-2m-9=-2•1/2-9=-10
48.
-p(4+p)+(p-2)(p+2) при p=3/4
-p(4+p)+(p-2)(p+2)= -4p-p²+p²-4=-4p-4
-4p-4=-4•3/4-4=-3-4=-7
49.
(n+6)²+(2-n)(2+n) при n=-5/12
(n+6)²+(2-n)(2+n)=n²+12n+36+4-n²=40+12n
40+12n=40+12(-5/12)=40-5=35
1) y-2. ОДЗ: y≠2
2) a-1. ОДЗ: a≠1
Объяснение:
№1. (y+2+):=:==y-2. ОДЗ: y≠2
№2. (a+1+):=:==a-1. ОДЗ: a≠1
ОДЗ - область допустимых значений. Т.е. когда мы сокращаем что-либо в числителе и знаменателе, то мы можем потом включить это число в решения. То есть, например, в первом номере мы сокращаем скобку y-2. Тем самым мы сознательно "пропускаем" в решения (если бы мы не просто упрощали, а решали такое уравнение). Но эта скобка стоит у нас в знаменателе. А знаменатель не может быть равен 0, т.к. на 0 делить нельзя. Значит нужно исключить решение такого уравнения: y-2=0, т.е. y не равен 2. В первом номере скобку y^2+4 мы не выносим в ОДЗ, потому что если мы будем решать такое уравнение: y^2+4=0, то увидим, что оно никогда не будет равно 0. Квадрат любого числа - число неотрицательное по определению, а неотрицательное+положительное=положительное, т.е. не равное 0. Поэтому эту скобку мы не вносим в ОДЗ. Во втором номере мы сокращаем a^2, т.е. автоматически "пропускаем" a=0. Значит нужно его исключить. Также мы сокращаем скобку a-1, значит нужно исключить решение уравнения a-1=0, т.е. a не равно 1.